# Scientific Report

# GrassPlot v. 2.00 – first update on the database of multi-scale plant diversity in Palaearctic grasslands

Idoia Biurrun<sup>1\*®</sup>, Sabina Burrascano<sup>2®</sup>, Iwona Dembicz<sup>3,4,5®</sup>, Riccardo Guarino<sup>6®</sup>, Jutta Kapfer<sup>7®</sup>, Remigiusz Pielech<sup>8</sup>, Itziar Garcia-Mijangos<sup>1®</sup>, Viktoria Wagner<sup>9®</sup>, Salza Palpurina<sup>10®</sup>, Anne Mimet<sup>11,12</sup>, Vincent Pellissier<sup>11</sup>, Corrado Marceno<sup>1,13®</sup>, Arkadiusz Nowak<sup>3,14</sup>, Ariel Bergamini<sup>15®</sup>, Steffen Boch<sup>15®</sup>, Anna Mária Csergő<sup>16</sup>, John-Arvid Grytnes<sup>17®</sup>, Juan Antonio Campos<sup>1®</sup>, Brigitta Erschbamer<sup>18®</sup>, Borja Jiménez-Alfaro<sup>19®</sup>, Zygmunt Kącki<sup>20®</sup>, Anna Kuzemko<sup>13,21®</sup>, Michael Manthey<sup>22®</sup>, Koenraad van Meerbeek<sup>23®</sup>, Grzegorz Swacha<sup>21®</sup>, Elias Afif<sup>24®</sup>, Juha M. Alatalo<sup>25,26®</sup>, Michele Aleff<sup>27®</sup>, Manuel Babbi<sup>5</sup>, Zoltán Bátori<sup>28®</sup>, Elena Belonovskava<sup>29</sup>, Christian Berg<sup>30®</sup>, Kuber Prasad Bhatta<sup>17®</sup>, Laura Cancellieri<sup>31®</sup>, Tobias Ceulemans<sup>32®</sup>, Balázs Deák<sup>33®</sup>, László Demeter<sup>34</sup>, Lei Deng<sup>35</sup>, Jiří Doležal<sup>36®</sup>, Christian Dolnik<sup>37</sup>, Wenche Dramstad<sup>38®</sup>, Pavel Dřevojan<sup>13®</sup>, Klaus Ecker<sup>15</sup>, Franz Essl<sup>39</sup>, Jonathan Etzold<sup>40®</sup>, Goffredo Filibeck<sup>31®</sup>, Wendy Fjellstad<sup>38®</sup>, Behlül Güler<sup>41®</sup>, Michal Hájek<sup>13®</sup>, Daniel Hepenstrick<sup>5</sup>, John G. Hodgson<sup>42</sup>, João P. Honrado<sup>43®</sup>, Annika K. Jägerbrand<sup>44®</sup>, Monika Janišová<sup>55®</sup>, Philippe Jeanneret<sup>46®</sup>, András Kelemen<sup>47®</sup>, Philipp Kirschnet<sup>48®</sup>, Ewelina Klichowska<sup>49®</sup>, Ganna Kolomiiets<sup>55®</sup>, Łukasz Kozub<sup>4®®</sup>, Jan Lepš<sup>36®</sup>, Regina Lindborg<sup>51®</sup>, Swantje Löbel<sup>52®</sup>, Angela Lomba<sup>43®</sup>, Martin Magnes<sup>30®</sup>, Helmut Mayrhofer<sup>30</sup>, Marek Malicki<sup>53®</sup>, Ermin Mašič<sup>54®</sup>, Eliane S. Meier<sup>46®</sup>, Denis Mirin<sup>55®</sup>, Ulf Molau<sup>56</sup> Ivan Moysiyenko<sup>57®</sup>, Alireza Naqinezhad<sup>58®</sup>, Josep M. Ninot<sup>59®</sup>, Jan Roleček<sup>13,62</sup>, Vladimir Ronkin<sup>63®</sup>, Galina Savchenko<sup>63®</sup>, Deria Shyriaieva<sup>18®</sup>, Hanne Sickel<sup>38</sup>, Carly Stevens<sup>64</sup>, Sebastian Świerszcz<sup>3®</sup>, Csaba Tölgyesi<sup>28®</sup>, Nadezda Tsarevskaya<sup>29</sup>, Orsolya Valkó<sup>47®</sup>, Carmen Van Mechelen<sup>65®</sup>, Iuliia Vashenyak<sup>66</sup>, Ole Reidar Vetaas<sup>67®</sup>, Denys Vynokurov<sup>13,18®</sup>, Emelie Waldén<sup>51®</sup>, Stefan Widmer<sup>5®</sup>, Sebastian Wolfrum<sup>68</sup>, Anna Wróbel<sup>49®</sup>, Ekaterina Zlotnikova<sup>69®</sup>, & Jürgen Dengler<sup>5,12,70®</sup>

<sup>1</sup>Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain; <u>idoia.biurrun@ehu.es;</u> <u>itziar.garcia@ehu.es</u>, <u>marceno.corrado@gmail.com,</u> juanan.campos@ehu.es

<sup>4</sup>Department of Plant Ecology and Environmental Conservation, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland; <u>lukasz.kozub@biol.uw.edu.pl</u>

<sup>5</sup>Vegetation Ecology Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Grüentalstr. 14, 8820 Wädenswil, Switzerland; <u>babb@zhaw.ch, hepe@zhaw.ch, stefan.widmer@zhaw.ch, juergen.dengler@uni-bayreuth.de</u>

<sup>8</sup>Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture in Kraków, al. 29 Listopada 46, 31-425 Kraków, Poland; <u>remekpielech@gmail.com</u>

<sup>9</sup>Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada; <u>viktoria.wagner@ualberta.ca</u>

<sup>10</sup>Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Acad. G. Bonchev, bl. 23, 1113 Sofia, Bulgaria; <u>salza.palpurina@gmail.com</u>

<sup>11</sup>Department Computational Landscape Ecology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; <u>anne.mimet@gmail.com</u>, <u>vincent.pellissier@gmail.com</u> <sup>12</sup>German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany

<sup>13</sup>Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic; <u>anyameadow.ak@gmail.com</u>, <u>pavel.drevojan@seznam.cz</u>, <u>hajek@sci.muni.cz</u>, <u>hon-</u> <u>za.rolecek@centrum.cz</u>, <u>phytosocio@ukr.net</u>

<sup>14</sup>Institute of Biology, University of Opole, Oleska St., 45-052 Opole, Poland <sup>15</sup>Biodiversity & Conservation Biology, WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; <u>ariel.bergamini@wsl.ch</u>, <u>steffen.boch@wsl.ch</u>, <u>klaus.ecker@wsl.ch</u>

<sup>16</sup>Department of Botany and Soroksár Botanical Garden, Faculty of Horticultural Science, Szent István University, Villány Street 29-43, 1118 Budapest, Hungary; <u>Csergo.Anna.Maria@kertk.szie.hu</u>

<sup>17</sup>Department of Biological Sciences, University of Bergen, Postbox 7803, 5020 Bergen, Norway; <u>jon.grytnes@uib.no</u>, <u>kuber.bhatta@uib.no</u>

<sup>18</sup>Department of Botany, University of Innsbruck, Sternwartestr. 15, 6020 Innsbruck, Austria; <u>brigitta.erschbamer@uibk.ac.at</u>

<sup>19</sup>Research Unit of Biodiversity (CSIC, UO, PA), Oviedo University, Campus de Mieres, 33600 Mieres, Spain; <u>borja.jimenez-alfaro@botanik.uni-halle.de</u> <sup>20</sup>Botanical Garden, University of Wrocław, Sienkiewicza 23, 50-335 Wrocław, Poland; <u>zygmunt.kacki@uwr.edu.pl</u>, <u>grze-</u> gorz.swacha@uwr.edu.pl

<sup>21</sup>Geobotany and Ecology Department, M.G. Kholodny Institute of Botany NAS of Ukraine, Tereschenkivska str. 2, 1601 Kyiv, Ukraine; <u>darshyr@gmail.com</u>

 <sup>22</sup>Institute of Botany and Landscape Ecology, Greifswald University, Soldmannstr. 15, 17487 Greifswald, Germany; <u>manthey@uni-greifswald.de</u>
 <sup>23</sup>Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200e, 3001 Leuven, Belgium; <u>koenraad.vanmeerbeek@kuleuven.be</u>

<sup>&</sup>lt;sup>2</sup>Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; <u>sabina.burrascano@uniroma1.it</u>

<sup>&</sup>lt;sup>3</sup>Botanical Garden Center for Biological Diversity Conservation in Powsin, Polish Academy of Sciences, Prawdziwka St. 2, 02-973 Warsaw, Poland; i.dembicz@gmail.com, anowak@uni.opole.pl, seb.swierszcz@gmail.com

<sup>&</sup>lt;sup>6</sup>Department STEBICEF, Botanical Unit, University of Palermo, via Archiarafi 38, 90123 Palermo, Italy; <u>guarinotro@hotmail.com</u>

<sup>&</sup>lt;sup>7</sup>Department of Landscape Monitoring, Norwegian Institute of Bioeconomy Research, Holtvegen 66, 9269 Tromsø, Norway; <u>jutta.kapfer@nibio.no</u>

<sup>24</sup>Agroforestry Engineering Area, Department of Organisms and Systems Biology, Polytechnic School of Mieres, Oviedo University, Gonzalo Gutiérrez de Quirós s/n, 33600 Mieres, Asturias, Spain; elias@uniovi.es

<sup>25</sup>Department of Biological and Environmental Sciences, Qatar University, 2713 Doha, Qatar; jalatalo@gu.edu.ga

<sup>26</sup>Environmental Science Center, Qatar University, 2713 Doha, Qatar

<sup>27</sup>School of Biosciences and Veterinary Medicine, Plant Diversity & Ecosystems Management Unit, Bryology Laboratory & Herbarium, University of Camerino, Via Pontoni 5, 62032 Camerino (MC), Italy; michele.aleffi@unicam.it

<sup>28</sup>Department of Ecology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; <u>zbatory@gmail.com</u>, <u>festuca7@yahoo.com</u>

<sup>29</sup>Institute of Geography, Russian Academy of Sciences, Staromonetny per., 29, 119017 Moscow, Russia; <u>ebelonovskaya.0709@gmail.com</u>, <u>ngtsar@yandex.ru</u>

<sup>30</sup>Department of Plant Sciences, Institute of Biology, University of Graz, Holteigasse 6, 8010 Graz, Austria; <u>christian.berg@uni-graz.at</u>, <u>mar-tin.magnes@uni-graz.at</u>, helmut.mayrhofer@uni-graz.at

<sup>31</sup>Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, via San Camillo de Lellis snc, 01100 Viterbo, Italy; <u>cancellie-</u> ri@unitus.it, filibeck@unitus.it

<sup>32</sup>Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31 box 2435, 3001 Leuven, Belgium; <u>tobi-</u> <u>as.ceulemans@bio.kuleuven.be</u>

<sup>33</sup>MTA-DE Biodiversity and Ecosystem Services Research Group, Hungarian Academy of Sciences, Egyetem tér 1, 4032 Debrecen, Hungary; <u>de-</u> <u>balazs@gmail.com</u>

<sup>34</sup>State Agency for Protected Areas, pta. Libertatii nr. 5, 530140 Miercurea-Ciuc, Romania; <u>demeter.bio.eco@gmail.com</u>

<sup>35</sup>State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, NO. 26 Xinong Road, 712100 Yangling, China; <u>leideng@ms.iswc.ac.cn</u>

<sup>36</sup>Department of Botany, Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; <u>ji-riddolezal@gmail.com, suspa@prf.icu.cz</u>
<sup>37</sup>Ecology Centre Kiel, Kiel University, Olshausenstr. 40, 24098 Kiel, Germa-

<sup>3</sup> Ecology Centre Kiel, Kiel University, Olshausenstr. 40, 24098 Kiel, Germany; <u>cdolnik@ecology.uni-kiel.de</u>

<sup>38</sup>Department of Landscape Monitoring, Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway; <u>wenche.dramstad@nibio.no</u>, <u>wendy.fjellstad@nibio.no</u>, hanne.sickel@nibio.no

<sup>39</sup>Division of Conservation Biology, Vegetation and Landscape Ecology, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria; <u>franz.essl@univie.ac.at</u>

<sup>40</sup>ESTOK UG, Elbestr. 97, 16321 Bernau (bei Berlin), Germany; <u>jet-</u> zold@posteo.de

<sup>41</sup>Biology Education, Dokuz Eylul University, Uğur Mumcu Str. 135. No: 5, 35380 Buca, İzmir, Turkey; <u>behlul.guler2@gmail.com</u>

<sup>42</sup>Animal and Plant Sciences Sheffield University, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom; j.hodgson@sheffield.ac.uk

<sup>43</sup>Research Centre in Biodiversity and Genetic Resources (CIBIO) - Research Network in Biodiversity and Evolutionary Biology (InBIO), University of Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nº 7, 4485-641 Vairão, Vila do Conde, Portugal; <u>ihonrado@fc.up.pt</u>, <u>angelalomba@fc.up.pt</u>

<sup>44</sup>Department of Construction Engineering and Lighting Science, School of Engineering, Jönköping University, P. O. Box 1026, 551 11, Jönköping, Sweden; <u>annika.jagerbrand@ju.se</u>

<sup>45</sup>Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Ďumbierska 1, 974 11 Banská Bystrica, Slovakia; <u>moni-ka.janisova@gmail.com</u> <sup>46</sup>Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland; philippe.jeanneret@agroscope.admin.ch, meier.eliane@gmail.com

<sup>47</sup>MTA-DE Lendület Seed Ecology Research Group, Hungarian Academy of Sciences, Egyetem tér 1, 4032 Debrecen, Hungary; <u>kele-</u> <u>men.andras12@gmail.com</u>, <u>valkoorsi@gmail.com</u>

<sup>48</sup>Naturpark Kaunergrat Pitztal - Fließ – Kaunertal, Gachenblick 100, 6251 Fließ, Austria; <u>philipp.kirschner@gmail.com</u>

<sup>49</sup>Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland; <u>ewelinaklichowska@gmail.com</u>, <u>m.nobis@uj.edu.pl</u>, <u>an-</u><u>na.wrobel@doctoral.uj.edu.pl</u>

<sup>50</sup>National Nature Park "Buzky Gard", 85, Pervomaiska str., 55223 Mygyia, Mykolaiv region Ukraine; <u>koloanka@gmail.com</u>

<sup>51</sup>Dept. of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden; regina.lindborg@natgeo.su.se, walden.emelie@gmail.com

<sup>52</sup>Landscape Ecology and Environmental Systems Analysis, Institute of Geoecology, TU Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany; <u>s.loebel@tu-braunschweig.de</u>

<sup>53</sup>Department of Botany, University of Wrocław, ul. Kanonia 6/8, 50-328 Wrocław, Poland; <u>malickimarek@interia.pl</u>

<sup>54</sup>Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzgovina; <u>erminmasic@hotmail.com</u>

<sup>55</sup>Department of Vegetation Science and Plant Ecology, Biological faculty, St. Petersburg State University, Universitetskaja emb., 7/9, 199034 Saint Petersburg, Russia; mirin denis@mail.ru

<sup>56</sup>Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, 405 30 Gothenburg, Sweden; <u>ulf.molau@bioenv.gu.se</u>

<sup>57</sup>Department of Botany, Kherson State University, Universytetska St. 27, 73000 Kherson, Ukraine; <u>ivan.moysiyenko@gmail.com</u>

<sup>58</sup>Department of Biology, Faculty of Basic Sciences, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran; <u>a.naginezhad@umz.ac.ir</u>

<sup>59</sup>Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; <u>ininot@ub.edu</u>, <u>aaronperez@ub.edu</u>, <u>eulalia.pladevall@gmail.com</u>

<sup>60</sup>Department of Biosciences, University of Vic, Carrer de la Laura 13, 08500 Vic, Spain

<sup>61</sup>Michael-Succow-Foundation, Ellernholzstr. 1/3, 17489 Greifswald, Germany; jan.peters@succow-stiftung.de

<sup>62</sup>Department of Vegetation Ecology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 60200 Brno, Czech Republic

<sup>63</sup>Department of Zoology and Animal Ecology, V.N. Karazin Kharkiv National University, 4 Svobody Sq, 61022 Kharkiv, Ukraine; <u>ronkinvl@gmail.com</u>, savchgala5@gmail.com

<sup>64</sup>Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, United Kingdom; c.stevens@lancaster.ac.uk

<sup>65</sup>PXL Bio-Research, PXL University College, Agoralaan H, 3590 Diepenbeek, Belgium; carmen.vanmechelen@pxl.be

<sup>66</sup>Vasul' Stus Donetsk National University, 600<sup>th</sup> Anniversary Street, 21021, Vinnytsia, Ukraine; arrhenatherum@gmail.com

<sup>67</sup>Department of Geography, University of Bergen, Fosswinckelsgate 6, 5020 Bergen, Norway; <u>Ole.Vetaas@uib.no</u>

<sup>68</sup>Life Science Center Weihenstephan, Technische Universität München, Liesel-Beckmann-Straße 2, 85354, Freising, Germany; <u>sebas-</u> tian.wolfrum@tum.de

<sup>69</sup>Training Department, Stroyproekt Engineering Group, Dunaisky prospect 13A, 196158, Saint Petersburg, Russia; <u>ezlotnikova@stpr.ru</u>

<sup>70</sup>Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany

#### Palaearctic Grasslands 44 (2019): 26-47

**Abstract:** GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). Following a previous Long Database Report (Dengler et al. 2018, *Phytocoenologia* 48, 331–347), we provide here the first update on content and functionality of GrassPlot. The current version (GrassPlot v. 2.00) contains a total of 190,673 plots of different grain sizes across 28,171 independent plots, with 4,654 nested-plot series including at least four grain sizes. The database has improved its content as well as its functionality, including addition and harmonization of header data (land use, information on nestedness, structure and ecology) and preparation of species composition data. Currently, GrassPlot data are intensively used for broad-scale analyses of different aspects of alpha and beta diversity in grassland ecosystems.

**Keywords:** biodiversity; community ecology; Eurasian Dry Grassland Group (EDGG); Global Index of Vegetation-Plot Databases (GIVD); grassland vegetation; GrassPlot; macroecology; nested plot; Palaearctic; scale dependence; species-area relationship (SAR); vegetation-plot database.

**Abbreviations:** EDGG = Eurasian Dry Grassland Group; EVA = European Vegetation Archive; GIVD = Global Index of Vegetation-Plot Databases; GrassPlot = Database of Scale-Dependent Phytodiversity Patterns in Palaearctic Grasslands; SAR = species-area relationship.

Submitted: 25 November 2019; first decision: 11 December 2019; accepted: 12 December 2019

Scientific Editor: Frank Yonghong Li

Linguistic Editor: Richard Jefferson

#### Introduction

Since 2009, the Eurasian Dry Grassland Group (EDGG) has been conducting Field Workshops in various regions of the Palaearctic realm to collect high-quality multi-scale diversity and composition data of various, mostly dry grassland types (e.g. Turtureanu et al. 2014; Kuzemko et al. 2016; Polyakova et al. 2016; for overview of the sampled data, see Dengler et al. 2016a) following the same sampling methodology (Dengler et al. 2016b). In March 2017, the establishment of the collaborative vegetation-plot database GrassPlot allowed merging the data collected by the EDGG with the previously established "Database Species-Area Relationships in Palaearctic Grasslands" (Dengler et al. 2012). The resulting GrassPlot database is registered in the Global Index of Vegetation-Plot Databases (Dengler et al. 2011) under ID EU-00-003 (Dengler et al. 2018) and contains vegetation-plot data of grasslands in the widest sense (i.e. any vegetation type except forests, tall shrublands, aquatic and segetal communities) from the Palaearctic biogeographic realm (i.e. Europe, North Africa, and West, Central, North and Northeast Asia). The focus of GrassPlot is on data of precisely delimited plots, both multi-grain, nested-plot data of any plot size and single-grain data matching one of eight EDGG standard grain sizes (Dengler et al. 2018).

The purpose of GrassPlot is to provide quality data for broad -scale analyses of various aspects of vegetation diversity. The concept of GrassPlot and the content of its first public version 1.00 have been described by Dengler et al. (2018). Since this publication, GrassPlot data have been intensively used for broad-scale biodiversity analyses, such as speciesarea relationships (SARs) in continuous vegetation (Dengler et al. 2019), or manuscripts in preparation on small-scale beta diversity, and "benchmarking" Palaearctic grassland diversity. At the same time, the content and functionality of GrassPlot have significantly increased. This paper provides an overview of the improvements in the structure and content of the database since version 1.00.

#### **New functionalities**

#### Addition and harmonization of header data

Information on nestedness. GrassPlot includes both singlegrain data (hereafter individual plots) and nested-plot data consisting of subplots of several grain sizes, often replicated per grain size. All subplots of a nested series are included in one macro plot or mother plot, also with a complete species list (hereafter largest subplot). We have added several binary (Y/N) header data to document different aspects of nestedness: Individual plot, Independent plot (individual plots and largest subplots combined), Belonging to nested series with at least 2 sizes, Belonging to nested series with at least 4 sizes, Belonging to nested series with at least 7 sizes, and Perfect nesting. The latter indicates if the nested series corresponds to a perfect nesting or not, e.g., if all subplots of a certain size are included in the next larger subplot (Fig. 1). The additional column Distorting sizes indicates which are the grain sizes that are impeding the perfect nesting; if these distorting sizes were removed, a perfect nesting would result. Fig. 1 shows schemes of the three main types of nested sampling designs in GrassPlot, two with perfect nesting (Figs. 1a, 1b) and a third one with non-perfect nesting (Fig. 1c).

**Grassland types and biomes.** Data collected in GrassPlot represent different types of grasslands in the broadest sense. To allow future users and projects to deal with this considerable diversity of vegetation, we created a two-level vegetation typology with 22 vegetation types grouped into six broad groups: natural grasslands, secondary grasslands, azonal habitats, dwarf shrublands, tall forb and ruderal communities, and deserts and semi-deserts (Table 1). We also created expert rules to assign phytosociological syntaxa already included in GrassPlot to these 22 vegetation types (Table 2). Vegetation type was assigned based on phytosociological affinity or on other information provided by data Perfect nesting



# subplots

- subplot sizes that interrupt perfect nesting (distorting sizes) are framed by a blue square in the largest subplot

Fig. 1. Examples of nested-plot sampling schemes found in the GrassPlot database: a) perfect nesting with four grain sizes, without replication of the subplots; b) perfect nesting with eight grain sizes and replication at smaller grain sizes (field sampling standard with two replicates of each grain size except the largest, which is used during EDGG Field Workshops; for details see Dengler et al. 2016b), c) non-perfect nesting with eight grain sizes, where the smallest subplots completely tessellate the largest subplot. In this example, a typical GLORIA sampling design is shown (Pauli et al. 2012). Only the smallest subplots and the largest one are actually sampled in the field, while all intermediate subplot sizes are created post hoc by joining species lists of adjacent subplots. To achieve more different grain sizes, we accepted some that did not allow full tessellation of the largest subplot (see grey areas adjacent to subplots of grain sizes 4-7) and thus distorted the perfect nesting. When the distorting sizes of subplots were removed, a perfect nesting would result.

Table 1. Two-level vegetation typology applied in GrassPlot v. 2.00. Since the assignments to the vegetation types and groups were largely based on syntaxonomy, there are some grey zones, e.g. some xeric grasslands might be secondary.

| Group                 | Vegetation type                         |
|-----------------------|-----------------------------------------|
|                       | Alpine grasslands                       |
| Natural grasslands    | Alpine steppes                          |
| Natural grassiarius   | Rocky grasslands                        |
|                       | Xeric grasslands and steppes            |
|                       | Wet grasslands                          |
|                       | Mesic grasslands                        |
| Secondary grasslands  | Meso-xeric grasslands                   |
|                       | Mediterranean grasslands                |
|                       | Sandy dry grasslands                    |
|                       | Wetlands                                |
|                       | Saline communities                      |
| Azonal habitats       | Dunes                                   |
|                       | Rocks and screes                        |
|                       | Saline steppes and semi-deserts         |
|                       | Arctic-alpine heathlands                |
| Dwarf shrublands      | Lowland heathlands                      |
|                       | Garrigues and thorn cushion communities |
| Tall forb and ruderal | Tall forb and fringe communities        |
| communities           | Ruderal communities                     |
| Describe and source   | Alpine deserts                          |
| Deserts and semi-     | Cold deserts and semi-deserts           |
| ueseris               | Warm deserts and semi-deserts           |

collectors, e.g., vernacular names, species composition, localisation, and so on.

We also assigned each plot both to biomes and to geographic regions. For biomes, we used the recent classification by Bruelheide et al. (2019, based on Schultz 2005), which recognizes ten terrestrial biomes, all of them occurring in the Palaearctic realm, except "Tropics with yearround rain". We have assigned all plots in GrassPlot to one of these nine biomes using plot coordinates. As a result, all biomes present in the Palaearctic realm except "Tropics with summer rain", that occurs marginally on the Arabian Peninsula, are represented in GrassPlot. For geographic regionalization, we used Törok & Dengler (2018) and Dengler et al. (in press).

Land-use data. Land use is the main current driver of biodiversity change and loss worldwide (Collins et al. 1998). Vegetation survey databases provide spatially explicit information on local biodiversity (richness and/or composition). However, associated land-use information is generally scarce (but see Niedrist et al. 2009; Hudson et al. 2014). The lack of reliably coupled biodiversity and land-use data at a local scale that is available over large geographic extents substantially impedes our understanding of how biodiversity responds to anthropogenic environmental change.

The current version of GrassPlot now includes consistent and standardized information on the land use and land-use

intensity of the plots. Information on land-use was provided by data contributors with different degrees of detail. It has been structured into 19 different land-use variables, created to capture as much information as possible from existing datasets. The structure of the land-use data has been developed to meet the needs of future analyses regarding land use-data and to guide future sampling efforts. The 19 landuse variables are structured into four categories: land-use type (seven variables), land-use intensity and details (relative to each land-use type), land destination (for what purpose the land is used) and naturalness degree (see Table 3). Each grassland has one or several land-use types (for example it can be mown and fertilized), and a grassland can be mown for different purposes (land destination) such as farming (feeding cattle) or managing a public park (recreational destination). Land destination is a coarse categorisation which is expected to include several types of management practices.

Importantly, all plots of the GrassPlot database (190,673 plots) now have a land-use type, while other land-use variables are not available for all plots, indicated as NA (Table 3). Moreover, the variable *Naturalness degree* is still under development, and will be added when it is computed.

Environmental and structural data. GrassPlot v. 2.00 has also notably improved the coverage and consistency of several environmental and structural header data, which are stored with standardized measurement units. Topographic data are readily and consistently available for many plots with different degrees of coverage, e.g. 88% for Elevation, 34% for Aspect and Inclination, 5% for Microrelief. Microrelief is defined as the maximum distance to the ground when placing a stick on the ground in the most rugged part of the plot, measured perpendicular to the stick. The soil data with better coverage are  $pH H_20$  (15%), Soil texture class (14%), Conductivity (10%) and Soil depth (10%). Of the structural header data, Tree cover (95%), Shrub cover (50%), Herb cover (49%), Total vegetation cover (39%) and Cryptogam cover (37%) are the variables with better coverage. Additionaly, Litter cover is provided for 31% of plots, Proportion of stones, gravel and fine soil for 21% of plots and Mean height of the herb layer for 13% of plots. All environmental and structural data stored in GrassPlot have been directly measured or estimated in the field, or, in the case of soil parameters, in the laboratory using soil samples collected in the plots. Climatic and more complete topographic data can be retrieved from digital models using plot geographic coordinates, but the database is focused on directly measured data. Of course, projects using GrassPlot data may be able to combine them with environmental data extracted from digital models.

#### Preparation of species composition data

As reported by Dengler et al. (2018), the GrassPlot database also includes species composition data for most datasets (93%). This means that for 90.7% of the plots (Table 4), in addition to species richness data, there is also a complete list of vascular plant species and often also of lichens and Table 2. Assignment rules for phytosociological syntaxa to the 22 vegetation types as defined in GrassPlot v. 2.00, given at class level. Classes occurring in Europe are named after Mucina et al. (2016), classes from outside Europe according to various sources (Ermakov & Krestov 2009; Wehrden et al. 2009; Ermakov et al. 2014; Noroozi et al. 2014; Reinecke et al. 2017; Hüseynova & Yalçin 2018; Nowak et al. 2018). Classes absent in GrassPlot data are not shown in the table. For the classes with the notation *p.p.*, the assignment is made at order or alliance level (not shown here).

| Class                                      | Vegetation type                 | Class                                               | Vegetation type                              |
|--------------------------------------------|---------------------------------|-----------------------------------------------------|----------------------------------------------|
| Adiantetea                                 | Rocks and screes                | Kleinio-Euphorbietea<br>canariensis                 | Warm deserts and semi-deserts                |
| Ajanio-Cleistogenetea songoricae p.p.      | Alpine deserts                  | Koelerio-Corynephoretea                             | Sandy dry grasslands                         |
| Ajanio-Cleistogenetea songoricae p.p.      | Cold deserts and semi-deserts   | canescentis                                         |                                              |
| Ammophiletea                               | Dunes                           | Littorelletea uniflorae                             | Wetlands                                     |
| Artemisietea lerchianae                    | Cold deserts and semi-deserts   | Loiseleurio procumbentis-                           | Arctic-alpine heathlands                     |
| Artemisietea vulgaris                      | Ruderal communities             | Vaccinietea                                         |                                              |
| Arundinello anomalae-Agrostietea trinii    | Mesic grasslands                | Lygeo sparti-Stipetea<br>tenacissimae               | Mediterranean grasslands                     |
| Asplenietea trichomanis                    | Rocks and screes                | Molinio-Arrhenatheretea p.p.                        | Mesic grasslands                             |
| Astragalo microcephali-Brometea            | Garrigues and Thorn cushion     | Molinio-Arrhenatheretea p.p.                        | Tall forb and fringe communities             |
| tomentem p.p.                              | communicies                     | Molinio-Arrhenatheretea p.p.                        | Wet grasslands                               |
| Astragalo microcephali-Brometea            | Xeric grasslands and steppes    | Montio-Cardaminetea                                 | Wetlands                                     |
| tomenteni p.p.                             |                                 | Mulgedio-Aconitetea                                 | Tall forb and fringe communities             |
| Bidentetea                                 | Ruderal communities             | Nardetea strictae p.p.                              | Mesic grasslands                             |
| Cakiletea maritimae                        | Dunes                           | Nardetea strictae p.p.                              | Wet grasslands                               |
| Calamagrostietea langsdorfii               | Wet grasslands                  | Onobrychidetea cornutae                             | Garrigues and Thorn cushion communi-<br>ties |
| Calluno-Ulicetea                           | Lowland heathlands              | Ononido-Rosmarinetea                                | Garrigues and Thorn cushion communi-         |
| Carici rupestris-Kobresietea bellardii     | Alpine grasslands               |                                                     | ties                                         |
| Chenopodietea                              | Ruderal communities             | Oxycocco-Sphagnetea                                 | Wetlands                                     |
| Cleistogenetea squarrosae                  | Xeric grasslands and steppes    | Oxytropidetea persicae                              | Arctic-alpine heathlands                     |
| Crithmo-Staticetea                         | Saline communities              | Papaveretea rhoeadis                                | Ruderal communities                          |
| Didymophyso aucheri-Dracocephaletea        | Rocks and screes                | Phragmito-Magnocaricetea                            | Wetlands                                     |
| aucheri                                    |                                 | Poetea bulbosae                                     | Mediterranean grasslands                     |
| Digitario sanguinalis-Eragrostietea        | Ruderal communities             | Polygono-Poetea annuae                              | Ruderal communities                          |
| minoris                                    |                                 | Polypodietea                                        | Rocks and screes                             |
| Elyno-Seslerietea                          | Alpine grasslands               | Prungeleu uloplerue<br>Rhododendro hirsuti-Ericetea | Arctic-alpine heathlands                     |
| Epilobietea angustifolii                   | Ruderal communities             | carneae                                             |                                              |
| Festucetea indigestae p.p                  | Alpine grasslands               | Rumici-Astragaletea siculi                          | Garrigues and Thorn cushion communi-         |
| Festucetea indigestae p.p                  | Sandy dry grasslands            |                                                     | ties                                         |
| Festuco hystricis-Ononidetea striatae p.p. | Rocky grasslands                | Saginetea maritimae                                 | Saline communities                           |
| Festuco hystricis-Ononidetea striatae n n  | Garriques and Thorn cushion     | Salicetea herbaceae                                 | Arctic-alpine heathlands                     |
|                                            | communities                     | Salicornietea fruticosae                            | Saline communities                           |
| Festuco-Brometea p.p.                      | Xeric grasslands and steppes    | Scheuchzerio palustris-<br>Caricetea fuscae         | Wetlands                                     |
| Festuco-Brometea p.p.                      | Meso-xeric grasslands           | Sedo-Scleranthetea                                  | Rocky grasslands                             |
| Festuco-Brometea p.p.                      | Rocky grasslands                | Sisymbrietea                                        | Ruderal communities                          |
| Festuco-Puccinellietea                     | Saline steppes and semi-deserts | Spartinetea maritimae                               | Saline communities                           |
| Helianthemetea guttati                     | Mediterranean grasslands        | Stipo giganteae-Agrostietea                         | Mediterranean grasslands                     |
| Helichryso-Crucianelletea maritimae        | Dunes                           | Sting-Trachuniatog distachuse                       | Mediterranean grasslands                     |
| Isoëto-Nanojuncetea                        | Wetlands                        | Therosalicornietea                                  | Saline communities                           |
| Juncetea maritimi                          | Saline communities              | Thlaspietea rotundifolii                            | Rocks and screes                             |
| Juncetea trifidi                           | Alpine grasslands               | Trifolio-Geranietea sanguinei                       | Tall forb and fringe communities             |

Table 3. Land-use variables in GrassPlot v. 2.00 and the percentage of plots for which the information is available (% F). The percentages refer to the independent plots (N = 28,171). For binary variables, the column "% 1 in F" indicates the percentage frequency of the management technique among the plots that have this land-use information. Some plots have a combined land use (mown and grazed; natural and grazed; etc.), so the sum of plots in each specific land use can exceed the total number of plots in GrassPlot. "NA" indicates missing information.

| Variable group    | Variable name                | Variable type | Possible values      | % F (no NA) | % 1 in F<br>(no 0, no NA) |
|-------------------|------------------------------|---------------|----------------------|-------------|---------------------------|
| Land-use type     | Mown                         | binary        | 0/1                  | 90.3        | 11.3                      |
|                   | Grazed                       | binary        | 0/1                  | 89.3        | 62.8                      |
|                   | Burnt                        | binary        | 0/1                  | 69.2        | 2.3                       |
|                   | Fertilized                   | binary        | 0/1                  | 65.0        | 2.2                       |
|                   | Abandoned                    | binary        | 0/1                  | 67.2        | 19.1                      |
|                   | Natural                      | binary        | 0/1                  | 45.0        | 49.0                      |
|                   | Other                        | text          | free                 |             |                           |
| Land-use intensi- | Grazing intensity            | numeric       | 0 to 1               | 28.6        |                           |
| ty and details    | Grazing load                 | numeric       | 0 to infinity        | 9.8         |                           |
|                   | Grazing animal               | text          | free                 | 18.3        |                           |
|                   | Mowing frequency             | numeric       | 0 to infinity        | 10.4        |                           |
|                   | Burning frequency            | numeric       | 0 to 1               | 2.3         |                           |
|                   | Fertilization intensity      | numeric       | 0 to 1               | 12.9        |                           |
|                   | Fertilization type           | text          | synthetic/natural    | 0.9         |                           |
|                   | Fertilization details        | text          | free                 | 0.9         |                           |
|                   | Years since abandonment      | numeric       | 0 to infinity        | 2.2         |                           |
|                   | Abandonment: former land use | text          | arable, mown, grazed | 7.1         |                           |
| Land destination  | Land destination             | text          | cropland, farmland,  | 33.2        |                           |
|                   |                              |               | recreational         |             |                           |
| Naturalness       | Naturalness degree           | numeric       | 0 to 3               | -           |                           |

bryophytes, either as presence/absence or coverabundance information. This is the result of the work carried out between GrassPlot versions 1.00 and 2.00 to integrate the species composition data into a single uniform structure.

Most of the datasets were supplied as species × plot matrices ("wide tables"). Since such wide format data are neither suitable for merging into a single dataset nor can be filtered for functional groups or vegetation layers, they were transformed into a "long format" (see example in Appendix 1) using different packages suitable for data manipulation in R (e.g. *plyr*, *dplyr* and *tidyr*) (Wickham et al. 2017; Wickham & Henry 2019). In the long format, each row consists of a species record, i.e., an occurrence of a species in a plot or subplot. Additional columns provide information on plant group, vegetation layer, species abundance and abundance-scale. *Abundance-scale* is a binary column, indicating whether the value in *Abundance* column is a presence/absence value (P/A = 0/1) or a cover-abundance value at the percentage scale (cover: 0-100). Cover abundance values that

Table 4. Overview of some key parameters of GrassPlot v. 2.00 covering access regime, methodological aspects and temporal and elevational distribution. The column "NA" indicates the fraction of plots in GrassPlot v. 2.00 for which the respective field is currently without content. The percentages refer to the independent plots (*N* = 28,171).

| Parameter                          | NA     | Frequency distribution of parameter values                                                                                                                                                      |
|------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Availability of data               |        |                                                                                                                                                                                                 |
| Access regime                      | < 0.1% | 1 – restricted access (12.0%); 2 – semi-restricted access (86.2%); 3 – free access (1.7%)                                                                                                       |
| Availability of compositional data | -      | Yes-ready (10.0%); Yes-in preparation (80.7); to be provided later (5.4%); no (3.8%)                                                                                                            |
| Methodological aspects             |        |                                                                                                                                                                                                 |
| Recording method                   | 0.2%   | Shoot presence (69.9%); rooted presence (29.9%)                                                                                                                                                 |
| Plot shape                         | 0.1%   | Squares (81.6%); rectangles 1:1.6 (0.2%); rectangles more elongated than 1:2 (0.3%); circles (18.0%)                                                                                            |
| Accuracy of coordinates            | 0.4%   | $\leq$ 1 m (18.3%); 1.1–10 m (47.5%); 11–100 m (12.3%); 101–1,000 m (16.4%); > 1,000 m (5.2%)                                                                                                   |
| Spatio-temporal distribution       |        |                                                                                                                                                                                                 |
| Year of recording                  | -      | Before 1980 (0.1%); 1980–1989 (10.5%); 1990–1999 (13.3%); 2000–2009 (17.7%); 2010 and later (59.3%)                                                                                             |
| Elevation                          | 12.0%  | $\leq$ 10 m a.s.l. (14.9%); 11–100 m a.s.l. (9.2%); 101–1,000 m a.s.l. (28.8%); 1,001–2,000 m a.s.l. (20.1%); 2,001–3,000 m a.s.l. (8.5%); 3,001–4,000 m a.s.l. (3.7%); > 4,000 m a.s.l. (2.8%) |

were originally measured by means of categorical scales (e.g. different variants of Br.-Bl., Londo, and so on) have already been transformed to percentage during the wide data format by choosing the midpoint of the upper and lower boundaries of a cover class. The original cover-abundance scale has been stored in the database together with all other plot-level metadata, plus geographic, environmental, land-use and structural data. Species composition longformat tables also maintain relevant metadata such as the GrassPlot ID of the single plot or subplot of a nested-series, the ID of the largest subplot within which the subplot is nested (only for nested-plots) and its grain size. This data structure allows data to be combined within and across datasets for later analyses on species composition either by using the long format or reshaping it into a wide format of species × plot matrices.

While the data are being prepared in a long format, progress is also being made to develop a process to semiautomatically adjust species nomenclature, i.e. correcting typographical errors and homogenizing different levels of identification detail and differences in species name format (e.g. removing authorities from taxon names). This allows taxon names to be standardized according to "The Plant List" (www.theplantlist.org), using the taxonstand package (Cayuela et al. 2012) in R (R Core Team 2019). In addition, we plan to add a column named "determ gual" to indicate for each taxon its quality of determination: 1 - determined to the species level (e.g. Viola arvensis), 0.5 - determination to species level not certain (e.g. Viola arvensis aggr., Viola cf. arvensis, Viola arvensis/kitaibeliana), 0.2 - species unknown (species epithet missing); 0 – genus unknown (e.g. Violaceae). This would allow us to calculate a "species composition quality" index for each plot as follows: the sum of the "determ gual" values of each species in the plot divided by the total number of species. This "species composition quality" index ranges from 1 (all taxa are determined at least to the species level) to 0 (taxa at family level). The proportion of species determined to different levels will be calculated for each plot and various thresholds (based on project aims) can be used to filter out plots that do not meet species composition quality criteria.

The last step in the process of harmonizing the composition data involves dealing with homonyms and synonyms originating from different concepts of species names. Many contributed datasets also provide information on the reference flora, but collaboration with data providers will be crucial in this last step.

Currently, 76 out of the 171 datasets for which composition data have been provided to GrassPlot are already available in long format.

#### Content of GrassPlot v. 2.00

The current GrassPlot version 2.00 of 7 November 2019 contains data from 184 contributing datasets, i.e. 59 (47%) more compared to GrassPlot version 1.00 (Dengler et al. 2018). The newly contributed datasets are listed in Appendix 2. In total, the database now contains 190,673 plots of

different grain sizes (+21,676 plots or 13% added to version 1.00), corresponding to 28,171 independent plots. Among these are 22,422 individual plots (single-grain data) and 5,749 nested-plot series with at least two grain sizes (often consisting of several subseries), of which 4,654 contain at least four grain sizes (+1,857 or 66%) and 2,057 even seven and more grain sizes. Most contributors have assigned their plots to the "semi-restricted access" regime, but a few have allocated their plots to the "restricted access" or "free access" categories (Table 4).

GrassPlot comprises data over a wide geographic range, from the Canary Islands (Tenerife) in the west (16.3° W) to Kamchatka in the east (161.7° E) and from Nepal in the south (28.2° N) to Svalbard (Norway) in the north (77.9° N). The highest density of plots were recorded in temperate Europe (Figs. 2 and 3). In total, the plots originate from 47 countries, with Spain having the highest number (58,977 plots) and Austria the highest density (16.58 plots per 100 km<sup>2</sup>) of the total plots. Switzerland has the highest number (5,172 plots) and Andorra the highest density (16.45 plots per 100 km<sup>2</sup>) of independent plots (Table 5). Data locations range from sea level to 5,750 m a.s.l., with the largest fraction of independent plots coming from 101-1,000 m a.s.l. (Table 4). Sampling year is one of the metadata included for each plot, and this shows that data were sampled between 1948 and 2018, with 59.3% of all independent plots surveyed between 2010-2019 (Table 4). Currently, 98% of all independent plots have been assigned to one of 22 vegetation types (Table 6), with 79% of plots being syntaxonomically assigned to a class and/or subordinate syntaxa. Natural grasslands, secondary grasslands and azonal habitats are the most frequent broad groups. Within these groups, alpine grasslands and xeric grasslands and steppes, mesoxeric and mesic grasslands and saline communities and wetlands, respectively, are the most frequent vegetation types (Table 6). With respect to azonal communities, Juncetea maritimi and Scheuchzerio palustris-Caricetea fuscae are the most frequent phytosociological classes in saline communities and wetlands, respectively. The distribution of phytosociological classes across the natural and secondary grassland types is shown in Fig. 4. The temperate dry grassland class Festuco-Brometea (23%) is present in rocky grasslands, meso-xeric grasslands and xeric grasslands and steppes, but most plots correspond to meso-xeric grasslands. The class Molinio-Arrhenatheretea (12%) is well represented in mesic and wet grasslands, while the best-represented classes in alpine and sandy dry grasslands are Juncetea trifidi and Koelerio-Corynephoretea canescentis, respectively (Fig. 4).

The most frequent standard-plot sizes are 0.01 m<sup>2</sup>, followed by 1 m<sup>2</sup> and 9–10 m<sup>2</sup> (Table 7). Data of the complete vegetation (vascular plants, and terricolous bryophytes and lichens) are available for 16,515 plots (8.7%) (Table 7). Methodologically, the majority of contributors used shoot sampling rather than rooted sampling (Table 4), which can make a big difference for the assessment of vascular plant richness at small spatial grains (Dengler 2008; Güler et al. 2016; Cancellieri et al. 2017). Among plot shapes, squares were



Table 5. Number (*N*) and density of plots per country (or dependent territory), sorted by decreasing density of independent plots (N = 28,171). The twenty five countries with the highest densities are listed. Area [km<sup>2</sup>] refers to the size of the respective territory. For comparison columns  $N_{all}$  and  $N_{all}$  / 100 km<sup>2</sup> provide numbers and densities of all plots for the listed countries ( $N_{all} = 190,673$ ).

| Code | Country                | Area [km <sup>2</sup> ] | N     | N / 100 km² | <b>N</b> <sub>all</sub> | N <sub>all</sub> / 100 km <sup>2</sup> |
|------|------------------------|-------------------------|-------|-------------|-------------------------|----------------------------------------|
| AD   | Andorra                | 468                     | 77    | 16.45       | 77                      | 16.45                                  |
| СН   | Switzerland            | 41,285                  | 5,172 | 12.52       | 6,134                   | 14.86                                  |
| HU   | Hungary                | 93,030                  | 2,638 | 2.84        | 4,320                   | 4.64                                   |
| EE   | Estonia                | 45,100                  | 832   | 1.84        | 1,578                   | 3.50                                   |
| AT   | Austria                | 83,855                  | 1,401 | 1.67        | 13,899                  | 16.58                                  |
| DE   | Germany                | 356,840                 | 3,684 | 1.03        | 8,359                   | 2.34                                   |
| ES   | Spain                  | 504,790                 | 3,451 | 0.68        | 58,977                  | 11.68                                  |
| AZ   | Azerbaijan             | 86,600                  | 408   | 0.47        | 2,033                   | 2.35                                   |
| SJ   | Svalbard and Jan Mayen | 61,397                  | 280   | 0.46        | 280                     | 0.46                                   |
| IL   | Israel                 | 20,724                  | 82    | 0.39        | 1,795                   | 8.66                                   |
| LV   | Latvia                 | 64,589                  | 250   | 0.39        | 250                     | 0.39                                   |
| CZ   | Czech Republic         | 78,864                  | 280   | 0.36        | 1,396                   | 1.77                                   |
| BE   | Belgium                | 30,688                  | 90    | 0.29        | 90                      | 0.29                                   |
| BG   | Bulgaria               | 110,910                 | 315   | 0.28        | 844                     | 0.76                                   |
| HR   | Croatia                | 56,594                  | 160   | 0.28        | 227                     | 0.40                                   |
| NO   | Norway                 | 323,758                 | 911   | 0.28        | 15,292                  | 4.72                                   |
| SK   | Slovakia               | 49,035                  | 139   | 0.28        | 477                     | 0.97                                   |
| IT   | Italy                  | 301,245                 | 742   | 0.25        | 15,120                  | 5.02                                   |
| UK   | United Kingdom         | 244,587                 | 586   | 0.24        | 3,756                   | 1.54                                   |
| SE   | Sweden                 | 440,940                 | 1,000 | 0.23        | 26,219                  | 5.95                                   |
| PL   | Poland                 | 312,685                 | 620   | 0.20        | 3,148                   | 1.01                                   |
| RO   | Romania                | 238,397                 | 436   | 0.18        | 1,354                   | 0.57                                   |
| SI   | Slovenia               | 20,273                  | 37    | 0.18        | 37                      | 0.18                                   |
| UA   | Ukraine                | 603,628                 | 765   | 0.13        | 2677                    | 0.44                                   |
| RS   | Serbia                 | 77,453                  | 119   | 0.15        | 533                     | 0.69                                   |

most frequently employed (82%), followed by circles (18%) but rectangles are rarer. GrassPlot's geographic coordinates most often have an accuracy of < 1 km and in 18%, of < 1 m (Table 4).

As explained above, header data in GrassPlot also hold many structural (e.g. cover and height of vegetation layers, biomass) and ecological (e.g. topography, soil, land use) parameters that have harmonized terminology and units of measurement. The distribution of plots across biomes and regions is shown in Fig. 5 and Table 8, respectively.

#### Governance, applications and outlook

GrassPlot is a self-governed consortium, associated with the Eurasian Dry Grassland Group (EDGG). The data contributors remain owners of their data and become members of the consortium. Every two years, the consortium elects from its members a seven-strong Governing Board. Since 27 February 2019, the Governing Board is composed of Jürgen Dengler (Switzerland; custodian), Idoia Biurrun (Spain, deputy custodian and database manager), Sabina Burrascano (Italy), Iwona Dembicz (Poland and Switzerland), Riccardo Guarino (Italy), Jutta Kapfer (Norway) and Remigiusz Pielech (Poland). Other consortium members act as additional data managers, such as Itziar García-Mijangos, Salza Palpurina, Anne Mimet, Corrado Marcenò and Vincent Pellissier. Rights and duties of data contributors and data users are regulated in Bylaws, of which a slightly modified version was adopted by the GrassPlot Consortium on 1 January 2019. The Grass-Plot website is currently hosted at the Ecoinformatics Portal Bayreuth (<u>https://bit.ly/2HvVkgu</u>), but will be transferred shortly to the new EDGG website (<u>http://www.edgg.org</u>).

As already mentioned, the purpose of GrassPlot is to provide high-quality data for broad-scale analyses of various aspects of vegetation diversity. According to the GrassPlot Bylaws, members of the consortium can request data for research projects (and non-members can join up with a member to do so). Currently, one such paper project has been completed and three are under way. Dengler et al. (2019) recently analysed which function best describes species-area relationships (SARs) in Palaearctic grasslands. In a follow-up paper (J. Dengler, I. Dembicz et al., in prep.), the authors will test how the exponent of the power function (zvalue) as a measure of small-scale beta-diversity depends on taxonomic group, vegetation type and site conditions. Furthermore, an overview of mean, minimum and maximum richness data of Palaearctic grasslands across regions, vegetation types, taxa and scales will serve as a major benchmarking tool both for fundamental research and conservation and is well-developed (I. Biurrun et al. in prep.). In addition, an online reference database is planned for publication along with this study. Finally, the relationship between sampling grain and beta-diversity is now being tested

Table 6. Distribution of plots in GrassPlot v. 2.00 across the 22 vegetation types and five broad groups. *N* = number of independent plots in each vegetation type and broad group; % GP = proportion of independent plots of each vegetation type in GrassPlot; % VT = proportion of independent plots of a phytosociological class inside each vegetation type. If the values in % VT do not sum up to 100% within one vegetation type, this is due to plots without assignment to a phytosociological class, and also due to the fact that only classes with more than 10% VT are shown (with some exceptions). [NA] in the column *Group* indicates the number of plots that have not been assigned to any vegetation type. [NA] in the column *Phytosociological class* indicates that plots of this vegetation type do not have phytosociological assignment; assignation to vegetation type has been made manually.

| Alpine grasslands       3,023       10.7       Elyno-Seslerietea       1         Alpine grasslands       3,023       10.7       Festucetea indigestae       7         Juncetea trifidi       5         Natural grasslands       Alpine steppes       89       0.3       [NA]       7         Festuco hystricis-Ononidetea striatae       7       7       7 | 12.5<br>7.3<br>50.5<br>-<br>24.6<br>56.6<br>14.1 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Alpine grasslands       3,023       10.7       Festucetea indigestae       7         Juncetea trifidi       5         Natural grasslands       Alpine steppes       89       0.3       [NA]       -         Festuco hystricis-Ononidetea striatae       72                                                                                                 | 7.3<br>50.5<br>-<br>24.6<br>56.6<br>14.1         |
| Juncetea trifidi     E       Natural grasslands     Alpine steppes     89     0.3     [NA]     -       Festuco hystricis-Ononidetea striatae     2                                                                                                                                                                                                         | 50.5<br>-<br>24.6<br>56.6<br>14.1                |
| Natural grasslands       Alpine steppes       89       0.3       [NA]       -         (N = 6.222)       Festuco hystricis-Ononidetea striatae       2                                                                                                                                                                                                      | -<br>24.6<br>56.6<br>14.1                        |
| (Natural grassianus Festuco hystricis-Ononidetea striatae 2                                                                                                                                                                                                                                                                                                | 24.6<br>56.6<br>14.1                             |
|                                                                                                                                                                                                                                                                                                                                                            | 56.6<br>14.1<br>7 2                              |
| Rocky grasslands 948 3.4 Festuco-Brometea 5                                                                                                                                                                                                                                                                                                                | 14.1                                             |
| Sedo-Scleranthetea 1                                                                                                                                                                                                                                                                                                                                       | 72                                               |
| Xeric grasslands and steppes 2 162 7 7                                                                                                                                                                                                                                                                                                                     | 1.2                                              |
| Festuco-Brometea 6                                                                                                                                                                                                                                                                                                                                         | 67.5                                             |
| Wet grasslands 1,375 4.9 <i>Molinio-Arrhenatheretea</i> 7                                                                                                                                                                                                                                                                                                  | 79.2                                             |
| Mesic grasslands 3,627 12.9 Molinio-Arrhenatheretea 5                                                                                                                                                                                                                                                                                                      | 59.9                                             |
| grasslands Meso-xeric grasslands 4,542 16.1 <i>Festuco-Brometea</i>                                                                                                                                                                                                                                                                                        | 96.7                                             |
| (N = 11,902) Lygeo sparti-Stipetea tenacissimae 1                                                                                                                                                                                                                                                                                                          | 18.7                                             |
| Mediterranean grasslands 817 2.9 Stipo-Trachynietea distachyae 7                                                                                                                                                                                                                                                                                           | 72.7                                             |
| Sandy dry grasslands 1,541 5.5 Koelerio-Corynephoretea canescentis 8                                                                                                                                                                                                                                                                                       | 88.3                                             |
| Oxycocco-Sphagnetea 1                                                                                                                                                                                                                                                                                                                                      | 10.9                                             |
| Wetlands 2,700 9.6 Phragmito-Magnocaricetea 1                                                                                                                                                                                                                                                                                                              | 13.2                                             |
| Scheuchzerio palustris-Caricetea fuscae                                                                                                                                                                                                                                                                                                                    | 70.9                                             |
| Saline communities 2,931 10.4 Juncetea maritimi 7                                                                                                                                                                                                                                                                                                          | 70.5                                             |
| Azonal habitats Ammophiletea 2                                                                                                                                                                                                                                                                                                                             | 43.7                                             |
| (N = 7,333) Dunes 953 3.4 Helichryso-Crucianelletea maritimae 5                                                                                                                                                                                                                                                                                            | 50.1                                             |
| Didymophyso aucheri-Dracocephaletea<br>Rocks and screes 356 1.3 aucheri                                                                                                                                                                                                                                                                                    | 22.1                                             |
| Thlaspietea rotundifolii 2                                                                                                                                                                                                                                                                                                                                 | 27.2                                             |
| Saline steppes and semi-<br>deserts 393 1.4 Festuco-Puccinellietea 1                                                                                                                                                                                                                                                                                       | 100                                              |
| Arctic-alpine heathlands 451 1.6 Loiseleurio procumbentis-Vaccinietea 2                                                                                                                                                                                                                                                                                    | 20.6                                             |
| Lowland heathlands 116 0.4 Calluno-Ulicetea 3                                                                                                                                                                                                                                                                                                              | 31.8                                             |
| Dwarf shrublands Festuco hystricis-Ononidetea striatae 2                                                                                                                                                                                                                                                                                                   | 2.4                                              |
| (N = 900) Garrigues and Thorn cushion 333 1.2 Onobrychidetea cornutae 2                                                                                                                                                                                                                                                                                    | 2.4                                              |
| Communities Ononido-Rosmarinetea 3                                                                                                                                                                                                                                                                                                                         | 3.6                                              |
| Molinio-Arrhenatheretea 3                                                                                                                                                                                                                                                                                                                                  | 35.4                                             |
| Tall forb and tringe 271 1.0 Mulgedio-Aconitetea 2                                                                                                                                                                                                                                                                                                         | 28.0                                             |
| communities Trifolio-Geranietea sanguinei 2                                                                                                                                                                                                                                                                                                                | 26.9                                             |
| (N = 724) Artemisietea vulgaris                                                                                                                                                                                                                                                                                                                            | 18.9                                             |
| Ruderal communities 453 1.6 Epilobietea angustifolii                                                                                                                                                                                                                                                                                                       | 34.4                                             |
| Deserts and semi- Alpine deserts 11 < 0.1 Ajanio-Cleistogenetea songoricae 7                                                                                                                                                                                                                                                                               | 72.7                                             |
| deserts Cold deserts and semi-deserts 519 1.8 [NA]                                                                                                                                                                                                                                                                                                         | _                                                |
| (N = 559) Warm deserts and semi-deserts 29 0.1 Kleinio-Euphorbietea canariensis                                                                                                                                                                                                                                                                            | 44.8                                             |
| [NA] - 531 1.9                                                                                                                                                                                                                                                                                                                                             |                                                  |

Table 7. Number of plots (*N*), mean richness ( $S_{mean}$ ) with standard deviation ( $S_{SD}$ ) and maximum richness ( $S_{max}$ ) in Grass-Plot v. 2.00 across different plot sizes, and for vascular plants and complete terricolous vegetation (vascular plants, bryophytes and lichens), respectively. All plots and subplots have been considered, thus a total of 190,673 plots. Nonstandard plot sizes include all other plot sizes (which are collected only in case of nested-plot series). Note that due to different sample sizes (see column *N*), maxima of larger plot sizes can be lower than for maxima of smaller plot sizes or that maxima of complete terricolous vegetation can be lower than maxima of vascular plants only. Information on plot sizes that deviate by a maximum of 10% (e.g. 9 m<sup>2</sup> vs. 10 m<sup>2</sup>), is combined in one row because, based on species-area relationships with typical *z*-values between 0.15 and 0.30, the relative difference in richness would only be about 1.6– 3.2%, i.e. negligible given the overall variability of the data.

|                             | Vascular plants |                   |                 |                  | Complete terricolous vegetation |                   |                 |                  |
|-----------------------------|-----------------|-------------------|-----------------|------------------|---------------------------------|-------------------|-----------------|------------------|
| Plot size (m <sup>2</sup> ) | Ν               | S <sub>mean</sub> | S <sub>SD</sub> | S <sub>max</sub> | Ν                               | S <sub>mean</sub> | S <sub>SD</sub> | S <sub>max</sub> |
| 0.0001                      | 2,534           | 1.9               | 1.6             | 11               | 1,797                           | 2.1               | 1.7             | 10               |
| 0.001 or 0.0009             | 3,838           | 3.3               | 2.1             | 19               | 1,738                           | 3.5               | 13.4            | 19               |
| 0.01                        | 69,525          | 3.9               | 17.0            | 24               | 2,491                           | 6.6               | 20.5            | 29               |
| 0.1 or 0.09                 | 4,963           | 11.3              | 30.4            | 43               | 1,763                           | 11.1              | 32.5            | 46               |
| 1                           | 22,121          | 13.9              | 55.9            | 79               | 2,672                           | 18.6              | 58.0            | 82               |
| 10 or 9                     | 9,964           | 27.6              | 75.0            | 106              | 2,617                           | 34.5              | 71.4            | 101              |
| 100                         | 4,634           | 29.6              | 89.1            | 127              | 962                             | 48.5              | 94.0            | 134              |
| 1,000 or 900 or 1,024       | 187             | 48.0              | 17.7            | 134              | 45                              | 59.0              | 85.6            | 123              |
| Non-standard plot sizes     | 72,907          |                   |                 |                  | 2,430                           |                   |                 |                  |
| Total                       | 190,673         |                   |                 |                  | 16,515                          |                   |                 |                  |



Fig. 4. Frequency of the natural and secondary grassland types and their assignment to phytosociological classes in Grass-Plot v. 2.00. Alpine steppes are not represented as they are not assigned to any phytosociological class in GrassPlot. Only independent plots have been considered (*N* = 28,171). Absolute numbers are shown, so that the presence of each class in different vegetation types can be compared.



GrassPlot v. 2.00 (N = 28,171) across biomes as defined by Bruelheide et al. (2019).

across different spatial extents and vegetation types based on composition data (S. Burrascano et al. in prep.).

GrassPlot represents work in progress. Therefore, we welcome new data contributions that meet the specific criteria of GrassPlot (Dengler et al. 2018; GrassPlot website, http:// bit.ly/2NZ6A9d). Of particular value are datasets that (largely) follow the standardised EDGG multi-scale sampling (Dengler et al. 2016b), specifically if they come from underrepresented regions or vegetation types (see Figs. 2 and 3, Table 6). However, as GrassPlot does not have external funding, data preparation and harmonisation has to be undertaken voluntarily by the Governing Board and other members and thus it might take a while from data provision to actual inclusion. Likewise, we are also working on improving the completeness and consistency of the header data (methodological, geographic, abiotic, land use, structural information) of the contained plots and increasing the fraction of plots with readily available compositional data. We have agreed with the European Vegetation Archive (EVA; Chytrý et al. 2016) and the global vegetation database "sPlot" (Bruelheide et al. 2019) to contribute GrassPlot data not yet included in these two databases once the compositional data are ready and provided the data owners contribute. This step will fill important data gaps in EVA and sPlot and give our data contributors the opportunity of additional benefit. Last but not least, we hope that the publication of the first macroecological paper from GrassPlot (Dengler et al. 2019) will raise the awareness of the unique qualities of GrassPlot for such studies and spur many more exciting research proposals to be submitted to the Governing Board.

Table 8. Distribution of independent plots in GrassPlot v. 2.00 according to the regionalization used in *Grasslands of the world* (Törok & Dengler 2018) and *Encyclopedia of the world's biomes* (Dengler et al. in press).

| Grasslands of the world                                                                                                                            | Ν                                                                      | %                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|
| Western and Northern Europe                                                                                                                        | 13,343                                                                 | 47.4                                                           |
| Eastern Europe                                                                                                                                     | 6,598                                                                  | 23.4                                                           |
| Mediterranean and Middle East                                                                                                                      | 5,301                                                                  | 18.8                                                           |
| China and Mongolia                                                                                                                                 | 1,762                                                                  | 6.3                                                            |
| Russia                                                                                                                                             | 522                                                                    | 1.9                                                            |
| Japan                                                                                                                                              | 418                                                                    | 1.5                                                            |
| Kazakhstan and Middle Asia                                                                                                                         | 227                                                                    | 0.8                                                            |
| Encyclopedia of the world's biomes                                                                                                                 | Ν                                                                      | %                                                              |
|                                                                                                                                                    |                                                                        |                                                                |
| Western Europe                                                                                                                                     | 14,042                                                                 | 49.8                                                           |
| Western Europe<br>Eastern Europe                                                                                                                   | 14,042<br>5,455                                                        | 49.8<br>19.4                                                   |
| Western Europe<br>Eastern Europe<br>Northern Europe                                                                                                | 14,042<br>5,455<br>3,281                                               | 49.8<br>19.4<br>11.6                                           |
| Western Europe<br>Eastern Europe<br>Northern Europe<br>Mediterranean                                                                               | 14,042<br>5,455<br>3,281<br>1,779                                      | 49.8<br>19.4<br>11.6<br>6.3                                    |
| Western Europe<br>Eastern Europe<br>Northern Europe<br>Mediterranean<br>China                                                                      | 14,042<br>5,455<br>3,281<br>1,779<br>1,291                             | 49.8<br>19.4<br>11.6<br>6.3<br>4.6                             |
| Western Europe<br>Eastern Europe<br>Northern Europe<br>Mediterranean<br>China<br>Middle East and Caucasus                                          | 14,042<br>5,455<br>3,281<br>1,779<br>1,291<br>685                      | 49.8<br>19.4<br>11.6<br>6.3<br>4.6<br>2.4                      |
| Western Europe<br>Eastern Europe<br>Northern Europe<br>Mediterranean<br>China<br>Middle East and Caucasus<br>Russia                                | 14,042<br>5,455<br>3,281<br>1,779<br>1,291<br>685<br>522               | 49.8<br>19.4<br>11.6<br>6.3<br>4.6<br>2.4<br>1.9               |
| Western Europe<br>Eastern Europe<br>Northern Europe<br>Mediterranean<br>China<br>Middle East and Caucasus<br>Russia<br>Mongolia                    | 14,042<br>5,455<br>3,281<br>1,779<br>1,291<br>685<br>522<br>471        | 49.8<br>19.4<br>11.6<br>6.3<br>4.6<br>2.4<br>1.9<br>1.7        |
| Western Europe<br>Eastern Europe<br>Northern Europe<br>Mediterranean<br>China<br>Middle East and Caucasus<br>Russia<br>Mongolia<br>Japan and Korea | 14,042<br>5,455<br>3,281<br>1,779<br>1,291<br>685<br>522<br>471<br>418 | 49.8<br>19.4<br>11.6<br>6.3<br>4.6<br>2.4<br>1.9<br>1.7<br>1.5 |

#### **Author contributions**

I.B. is the database manager of GrassPlot; she and J.D. planned and led this paper. S.B., I.D., R.G., J.K. and R.P. as further members of the GrassPlot Governing Board as well as I.G.M., V.W., S.P., A.M., V.P, C.M. and A.N. contributed substantially to data preparation, analyses and writting. A.B., S.Bo., A.M.C. J.A.G., A.K., J.A.C., B.E., B.J.A., Z.K., M.M., G.S and K.M added helpful comments, and all other authors contributed data to GrassPlot after v. 1.00, checked and approved the manuscript.

#### Acknowledgements

We thank the BayIntAn program of the Bavarian Research Alliance (<u>https://www.bayfor.org/en/research-funding/</u> <u>bayintan.php; grant no. UBT 2017 58</u>) and the Bayreuth Centre of Ecology and Environmental Research (BayCEER; <u>https://www.bayceer.uni-bayreuth.de/</u>) for funding the GrassPlot workshop in Bayreuth. We thank EDGG and the International Association for Vegetation Science (IAVS) for the continuous support of the EDGG Field Workshops during which large parts of the GrassPlot data were sampled. We are also grateful to the scientific editor Frank Yonghong Li and the linguistic editor Richard Jefferson.

#### References

- Bruelheide, H., Dengler, J., Jiménez-Alfaro, B., Purschke, O., Hennekens, S.M., Chytrý M., Pillar, V.D., Jansen, F., Kattge, J., (...) & Zverev, A. 2019. sPlot – a new tool for global vegetation analyses. *Journal of Vegetation Science* 30: 161–186.
- Cancellieri, L., Mancini, L.D., Sperandii, M.G. & Filibeck, G. 2017. In and out: Effects of shoot- vs. rooted-presence sampling meth-

ods on plant diversity measures in mountain grasslands. *Ecological Indicators* 72: 315–321.

- Cayuela, L, Granzow-de la Cerda, I., Albuquerque, F.S. & Golicher, D. 2012. Taxondstand: An R package for species names standardisation in vegetation databases. *Methods in Ecology and Evolution* 3: 1078–1083.
- Chytrý, M., Hennekens, S.M., Jiménez-Alfaro, B., Knollová, I., Dengler, J., Jansen, F., Landucci, F., Schaminée, J.H.G, Aćić, S., (...) & Yamalov, S. 2016. European Vegetation Archive (EVA): an integrated database of European vegetation plots. *Applied Vegetation Science* 19: 173–180.
- Collins, S.L., Knapp, A.K., Briggs, J.M., Blair, J.M. & Steinauer, E.M. 1998. Modulation of diversity by grazing and mowing in native tallgrass prairie. *Science* 280: 745–747.
- Dengler, J. 2008. Pitfalls in small-scale species-area sampling and analysis. *Folia Geobotanica* 43: 269–287.
- Dengler, J., Jansen, F., Glöckler, F., Peet, R.K., De Cáceres, M., Chytrý, M., Ewald, J., Oldeland, J., Finckh, M., (...) & Spencer, N. 2011. The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. *Journal of Vegetation Science* 22: 582–597.
- Dengler, J., Todorova, S., Becker, T., Boch, S., Chytrý, M., Diekmann, M., Dolnik, C., Dupré, C., Giusso del Galdo, G.P., (...) & Vassilev, K. 2012. Database Species-Area Relationships in Palaearctic Grasslands. *Biodiversity & Ecology* 4: 321–322.
- Dengler, J., Biurrun, I., Apostolova, I., Baumann, E., Becker, T., Berastegi, A., Boch, S., Dembicz, I., Dolnik, C., (...) & Weiser, F. 2016a. Scale-dependent plant diversity in Palaearctic grasslands: a comparative overview. *Bulletin of the Eurasian Dry Grassland Group* 31: 12–26.
- Dengler, J., Boch, S., Filibeck, G., Chiarucci, A., Dembicz, I., Guarino, R., Henneberg, B., Janišová, M., Marcenò, C., (...) & Biurrun, I. 2016b. Assessing plant diversity and composition in grasslands across spatial scales: the standardised EDGG sampling methodology. *Bulletin of the Eurasian Grassland Group* 32: 13–30.
- Dengler, J., Wagner, V., Dembicz, I., García-Mijangos, I., Naqinezhad, A., Boch, S., Chiarucci, A., Conradi, T., Filibeck, G., (...) & Biurrun, I. 2018. GrassPlot – a database of multi-scale plant diversity in Palaearctic grasslands. *Phytocoenologia* 48: 331–347.
- Dengler, J., Matthews, T.J., Steinbauer, M.J., Wolfrum, S., Boch, S., Chiarucci, A., Conradi, T., Dembicz, I., Marcenò, C., (...) & Biurrun, I. 2019. Species-area relationships in continuous vegetation: Evidence from Palaearctic grasslands. *Journal of Biogeography*. DOI: 10.1111/jbi.13697.
- Dengler, J., Biurrun, I., Boch, S., Dembicz, I. & Török, P. in press. Grasslands of the Palaeartic realm: introduction and synthesis. In: Goldstein, M.I. & DellaSala, D.A. (eds.) *Encyclopedia of the World's biomes*. Elsevier, Oxford, UK.
- Ermakov, N. & Krestov, P. 2009. Revision of the higher syntaxa of meadows in the Russian far east. *Vegetation of Russia 14.* St. Petersburg, Russia.
- Ermakov, N., Larionov, A., Polyakova, M., Pestunov, I. & Didukh. Y.P. 2014. Diversity and spatial structure of cryophitic steppes of the Minusinskaya intermountain basin in Southern Siberia (Russia). *Tuexenia* 34: 431–446.
- Güler, B., Jentsch, A., Bartha, S., Bloor, J.M.G., Campetella, G., Canullo, R., Házi, J., Kreyling, J., Pottier, J., (...) & Dengler, J. 2016.
  How plot shape and dispersion affect plant species richness counts: implications for sampling design and rarefaction analyses. *Journal of Vegetation Science* 27: 692–703.
- Hudson, L.N., Newbold, T., Contu, S., Hill, S.L.L., Lysenko, I., De Palma, A., Phillips, H.R.P., Senior, R.A., Bennett, D.J., (...) & Pur-

vis, A. 2014. The PREDICTS database: A global database of how local terrestrial biodiversity responds to human impacts. *Ecology and Evolution* 4: 4701–4735.

- Hüseynova, R. & Yalçin, E. 2018. Subalpine vegetation in Giresun Mountains (Turkey). *Acta Botanica Croatica* 77: 152–160.
- Kuzemko, A.A., Steinbauer, M.J., Becker, T., Didukh, Y.P., Dolnik, C., Jeschke, M., Naqinezhad, A., Ugurlu, E., Vassilev, K. & Dengler, J. 2016. Patterns and drivers of phytodiversity of steppe grasslands of Central Podolia (Ukraine). *Biodiversity and Conservation* 25: 2233–2250.
- Mucina, L., Bültmann, H., Dierßen, K., Theurillat, J.-P., Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., (...) & Tichý, L.
   2016. Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. *Applied Vegetation Science* 19 (Suppl. 1): 3–264.
- Niedrist, G., Tasser, E., Lüth, C., Dalla Via, J. & Tappeiner, U. 2009. Plant diversity declines with recent land use changes in European Alps. *Plant Ecology* 202: 195–210.
- Noroozi, J., Willner, W., Pauli, H. & Grabherr, G. 2014. Phytosociology and ecology of the high-alpine to subnival scree vegetation of N and NW Iran (Alborz and Azerbaijan Mts.). *Applied Vegetation Science* 17: 142–161.
- Nowak, A., Nobis, A., Nowak, S. & Nobis, M. 2018. Classification of steppe vegetation in the eastern Pamir Alai and southwestern Tian-Shan Mountains (Tajikistan, Kyrgyzstan). *Phytocoenologia* 48: 369–391.
- Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Benito Alonso, J.L., Coldea, G., Dick, J., Erschbamer, B., (...) & Grabherr, G. 2012. Recent plant diversity changes on Europe's mountain summits. *Science* 336: 353–355.
- Polyakova, M.A., Dembicz, I., Becker, T., Becker, U., Demina, O.N., Ermakov, N., Filibeck, G., Guarino, R., Janišová, M., (...) & Dengler, J. 2016. Scale- and taxon-dependent patterns of plant diversity in steppes of Khakassia, South Siberia (Russia). *Biodiversity and Conservation* 25: 2251–2273.
- R Core Team. 2019. *R: A language and environment for statistical computing*. R Foundation for Statistical Computing. Vienna, AT.
- Reinecke, J., Troeva, E. & Wesche, K. 2017. Extrazonal steppes and other temperate grasslands of northern Siberia – Phytosociological classification and ecological characterization. *Phytocoenologia* 47: 167–196.
- Schultz, J. 2005. *The ecozones of the world. The ecological division of the geosphere*. 2<sup>nd</sup> ed. Springer, Berlin, DE.
- Török, P. & Dengler, J. 2018. Palaearctic grasslands in transition: overarching patterns and future prospects. In: Squires, V.R., Dengler, J., Feng, H. & Hua, L. (eds.) Grasslands of the world: diversity, management and conservation: pp. 15–26. CRC Press, Boca Raton, US.
- Turtureanu, P.D., Palpurina, S., Becker, T., Dolnik, C., Ruprecht, E., Sutcliffe, L.M.E., Szabó, A. & Dengler, J. 2014. Scale- and taxondependent biodiversity patterns of dry grassland vegetation in Transylvania (Romania). Agriculture, Ecosystems & Environment 182: 15–24.
- Wehrden, H. von, Wesche, K. & Miehe, G. 2009. Plant communities of the southern Mongolian Gobi. *Phytocoenologia* 39: 331–376.
- Wickham, H. & Henry, L. 2019. tidyr: Easily Tidy Data with 'spread ()' and 'gather()' Functions. R package version 0.8.3. <u>https:// CRAN.R-project.org/package=tidyr</u>.
- Wickham, H., Francois, R., Henry, L. & Müller, K. 2017. *dplyr: A Grammar of Data Manipulation*. R package version 0.7.4. <u>https://CRAN.R-project.org/package=dplyr</u>.

| GrassPlot.plotID   | Area.m2 | GrassPlot.ID.largest.<br>nested | Species.original                             | Group | Layer | Abundance | Abundance_<br>Scale |
|--------------------|---------|---------------------------------|----------------------------------------------|-------|-------|-----------|---------------------|
| EU_F_N001_0.0001aa | 0.0001  | EU_F_N001_100                   | Eryngium<br>maritimum                        | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.0001ab | 0.0001  | EU_F_N001_100                   | Ammophila<br>arenaria subsp.<br>australis    | V     | Η     | 1         | P/A                 |
| EU_F_N001_0.0001ab | 0.0001  | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.0001bb | 0.0001  | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.001aa  | 0.001   | EU_F_N001_100                   | Eryngium<br>maritimum                        | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.001ab  | 0.001   | EU_F_N001_100                   | Ammophila<br>arenaria subsp.<br>australis    | V     | Η     | 1         | P/A                 |
| EU_F_N001_0.001ab  | 0.001   | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.001bb  | 0.001   | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.01aa   | 0.01    | EU_F_N001_100                   | Eryngium<br>maritimum                        | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.01ab   | 0.01    | EU_F_N001_100                   | Ammophila<br>arenaria subsp.<br>australis    | V     | Η     | 1         | P/A                 |
| EU_F_N001_0.01ab   | 0.01    | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.01ab   | 0.01    | EU_F_N001_100                   | Euphorbia<br>paralias                        | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.01ba   | 0.01    | EU_F_N001_100                   | Galium<br>arenarium                          | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.01bb   | 0.01    | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.1aa    | 0.1     | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.1aa    | 0.1     | EU_F_N001_100                   | Elytrigia juncea<br>subsp.<br>boreoatlantica | V     | Η     | 1         | P/A                 |
| EU_F_N001_0.1aa    | 0.1     | EU_F_N001_100                   | Eryngium<br>maritimum                        | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.1ab    | 0.1     | EU_F_N001_100                   | Ammophila<br>arenaria subsp.<br>australis    | V     | Η     | 1         | P/A                 |
| EU_F_N001_0.1ab    | 0.1     | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.1ab    | 0.1     | EU_F_N001_100                   | Eryngium<br>maritimum                        | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.1ab    | 0.1     | EU_F_N001_100                   | Euphorbia<br>paralias                        | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.1ab    | 0.1     | EU_F_N001_100                   | Hieracium<br>eriophorum                      | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.1ba    | 0.1     | EU_F_N001_100                   | Ammophila<br>arenaria subsp.<br>australis    | V     | Η     | 1         | P/A                 |

# Appendix 1. Example of species composition in a nested-plot series prepared in long format in GrassPlot v. 2.00.

# Appendix 1. Continuation.

| GrassPlot.plotID | Area.m2 | GrassPlot.ID.larges<br>t.nested | Species.original                             | Group | Layer | Abundance | Abundance_<br>Scale |
|------------------|---------|---------------------------------|----------------------------------------------|-------|-------|-----------|---------------------|
| EU_F_N001_0.1ba  | 0.1     | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.1ba  | 0.1     | EU_F_N001_100                   | Eryngium<br>maritimum                        | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.1ba  | 0.1     | EU_F_N001_100                   | Galium arenarium                             | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.1bb  | 0.1     | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 1         | P/A                 |
| EU_F_N001_0.1bb  | 0.1     | EU_F_N001_100                   | Elytrigia juncea<br>subsp.<br>boreoatlantica | V     | Η     | 1         | P/A                 |
| EU_F_N001_100    | 100     | EU_F_N001_100                   | Ammophila<br>arenaria subsp.<br>australis    | V     | Η     | 1         | P/A                 |
| EU_F_N001_100    | 100     | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 1         | P/A                 |
| EU_F_N001_100    | 100     | EU_F_N001_100                   | Elytrigia juncea<br>subsp.<br>boreoatlantica | V     | Η     | 1         | P/A                 |
| EU_F_N001_100    | 100     | EU_F_N001_100                   | Eryngium<br>maritimum                        | V     | Η     | 1         | P/A                 |
| EU_F_N001_100    | 100     | EU_F_N001_100                   | Euphorbia paralias                           | V     | Н     | 1         | P/A                 |
| EU_F_N001_100    | 100     | EU_F_N001_100                   | Galium arenarium                             | V     | Н     | 1         | P/A                 |
| EU_F_N001_100    | 100     | EU_F_N001_100                   | Hieracium<br>eriophorum                      | V     | Н     | 1         | P/A                 |
| EU_F_N001_100    | 100     | EU_F_N001_100                   | Leontodon saxatilis<br>subsp. saxatilis      | V     | Н     | 1         | P/A                 |
| EU_F_N001_10a    | 10      | EU_F_N001_100                   | Ammophila<br>arenaria subsp.<br>australis    | V     | Η     | 5         | Cover               |
| EU_F_N001_10a    | 10      | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 10        | Cover               |
| EU_F_N001_10a    | 10      | EU_F_N001_100                   | Elytrigia juncea<br>subsp.<br>boreoatlantica | V     | Η     | 20        | Cover               |
| EU_F_N001_10a    | 10      | EU_F_N001_100                   | Eryngium<br>maritimum                        | V     | Н     | 10        | Cover               |
| EU F N001 10a    | 10      | EU F N001 100                   | Euphorbia paralias                           | V     | Н     | 2.5       | Cover               |
| EU_F_N001_10a    | 10      | EU_F_N001_100                   | Hieracium<br>eriophorum                      | V     | Н     | 2.5       | Cover               |
| EU_F_N001_10b    | 10      | EU_F_N001_100                   | Ammophila<br>arenaria subsp.<br>australis    | V     | Η     | 5         | Cover               |
| EU_F_N001_10b    | 10      | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 2.5       | Cover               |
| EU_F_N001_10b    | 10      | EU_F_N001_100                   | Elytrigia juncea<br>subsp.<br>boreoatlantica | V     | Η     | 10        | Cover               |
| EU_F_N001_10b    | 10      | EU_F_N001_100                   | Eryngium<br>maritimum                        | V     | Н     | 10        | Cover               |
| EU_F_N001_10b    | 10      | EU_F_N001_100                   | Euphorbia paralias                           | V     | Н     | 2.5       | Cover               |
| EU_F_N001_10b    | 10      | EU_F_N001_100                   | Galium arenarium                             | V     | Н     | 5         | Cover               |
| EU_F_N001_10b    | 10      | EU_F_N001_100                   | Hieracium<br>eriophorum                      | V     | Η     | 2.5       | Cover               |

| GrassPlot.plotID | Area.m2 | GrassPlot.ID.larges<br>t.nested | Species.original                             | Group | Layer | Abundance | Abundance_<br>Scale |
|------------------|---------|---------------------------------|----------------------------------------------|-------|-------|-----------|---------------------|
| EU_F_N001_10b    | 10      | EU_F_N001_100                   | Leontodon<br>saxatilis subsp.<br>saxatilis   | V     | Η     | 2.5       | Cover               |
| EU_F_N001_1aa    | 1       | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 4         | Cover               |
| EU_F_N001_1aa    | 1       | EU_F_N001_100                   | Elytrigia juncea<br>subsp.<br>boreoatlantica | V     | Н     | 12        | Cover               |
| EU_F_N001_1aa    | 1       | EU_F_N001_100                   | Eryngium<br>maritimum                        | V     | Н     | 8         | Cover               |
| EU_F_N001_1aa    | 1       | EU_F_N001_100                   | Euphorbia<br>paralias                        | V     | Н     | 8         | Cover               |
| EU_F_N001_1aa    | 1       | EU_F_N001_100                   | Hieracium<br>eriophorum                      | V     | Н     | 1         | Cover               |
| EU_F_N001_1ab    | 1       | EU_F_N001_100                   | Ammophila<br>arenaria subsp.<br>australis    | V     | Н     | 35        | Cover               |
| EU_F_N001_1ab    | 1       | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 6         | Cover               |
| EU_F_N001_1ab    | 1       | EU_F_N001_100                   | Elytrigia juncea<br>subsp.<br>boreoatlantica | V     | Н     | 4         | Cover               |
| EU_F_N001_1ab    | 1       | EU_F_N001_100                   | Eryngium<br>maritimum                        | V     | Н     | 4         | Cover               |
| EU_F_N001_1ab    | 1       | EU_F_N001_100                   | Euphorbia<br>paralias                        | V     | Н     | 2         | Cover               |
| EU_F_N001_1ab    | 1       | EU_F_N001_100                   | Hieracium<br>eriophorum                      | V     | Н     | 1         | Cover               |
| EU_F_N001_1ba    | 1       | EU_F_N001_100                   | Ammophila<br>arenaria subsp.<br>australis    | V     | Н     | 10        | Cover               |
| EU_F_N001_1ba    | 1       | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 6         | Cover               |
| EU_F_N001_1ba    | 1       | EU_F_N001_100                   | Eryngium<br>maritimum                        | V     | Н     | 8         | Cover               |
| EU_F_N001_1ba    | 1       | EU_F_N001_100                   | Galium arenarium                             | V     | Н     | 20        | Cover               |
| EU_F_N001_1ba    | 1       | EU_F_N001_100                   | Leontodon<br>saxatilis subsp.<br>saxatilis   | V     | Н     | 1         | Cover               |
| EU_F_N001_1bb    | 1       | EU_F_N001_100                   | Calystegia<br>soldanella                     | V     | Н     | 3         | Cover               |
| EU_F_N001_1bb    | 1       | EU_F_N001_100                   | Elytrigia juncea<br>subsp.<br>boreoatlantica | V     | Η     | 5         | Cover               |
| EU_F_N001_1bb    | 1       | EU_F_N001_100                   | Eryngium<br>maritimum                        | V     | Н     | 1         | Cover               |
| EU_F_N001_1bb    | 1       | EU_F_N001_100                   | Euphorbia<br>paralias                        | V     | Н     | 3         | Cover               |
| EU_F_N001_1bb    | 1       | EU_F_N001_100                   | Galium arenarium                             | V     | Н     | 0.5       | Cover               |
| EU_F_N001_1bb    | 1       | EU_F_N001_100                   | Hieracium<br>eriophorum                      | V     | Н     | 1         | Cover               |
| EU_F_N001_1bb    | 1       | EU_F_N001_100                   | Leontodon<br>saxatilis subsp.<br>saxatilis   | V     | Η     | 1         | Cover               |

# Appendix 1. Continuation.

Appendix 2. Overview of the new datasets in GrassPlot v. 2.00 compared to GrassPlot v. 1.00, including datasets with increased plot numbers (CH\_B, with 2,700 additional plots, ES\_P, with 3,104 additional plots; UA\_F, 115; IR\_A, 102; RU\_I, 39). See below for quoted references.  $N_{all}$  = total number of plots ;  $N_{ind}$  = independent plots;  $N_{nes}$  = nested-plot series with at least four grain sizes.

| Dataset<br>ID | Short dataset name               | Country/ies               | Province: location                                 | Data owner(s)                                                                                        | Reference(s)                                                                                  | <b>N</b> all | Nind  | <b>N</b> nes |
|---------------|----------------------------------|---------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------|-------|--------------|
| EDGG Exp      | editions/Field Workshop          | s:                        |                                                    |                                                                                                      |                                                                                               |              |       |              |
| AT_E          | EDGG Eastern Alps                | Austria                   | Tyrol, Styria and<br>Carinthia                     | Martin Magnes, Elías Afif,<br>Christian Berg, Philipp<br>Kirschner, Ermin Mašić,<br>Helmut Mayrhofer | Magnes et al.<br>(2018)                                                                       | 232          | 52    | 15           |
| Individua     | Ily contributed datasets:        |                           |                                                    |                                                                                                      |                                                                                               |              |       |              |
| AS_A          | Nowak_Kyrgyzstan &<br>Tajikistan | Tajikistan,<br>Kyrgyzstan | Eastern Tajikistan<br>and whole<br>Kyrgyzstan      | Arkadiusz Nowak, Ewelina<br>Klichowska, Marcin Nobis,<br>Anna Wróbel                                 |                                                                                               | 156          | 12    | 12           |
| AT_D          | Essl, Austria old plots          | Austria                   |                                                    | Franz Essl                                                                                           |                                                                                               | 29           | 29    | 0            |
| AT_F          | Mayer_Obergurgl                  | Austria                   | Northern Tyrol:<br>Obergurgl                       | Roland Mayer, Brigitta<br>Erschbamer                                                                 | Mayer et al. (2009);<br>Mayer &<br>Erschbamer (2017)                                          | 216          | 108   | 0            |
| AZ_A          | Etzold Caucasus                  | Azerbaijan                | Eastern Greater<br>Caucasus:<br>Shahdag            | Jonathan Etzold, Tobias<br>Dahms, Michael Manthey,<br>Jan Peters                                     | Etzold et al. (2016)                                                                          | 1,013        | 204   | 204          |
| AZ_B          | Peper Gobustan                   | Azerbaijan                | Gobustan region:<br>Gobustan and<br>Jeiranchel     | Jan Peper, Michael<br>Manthey                                                                        | Peper et al. (2010a,<br>b)                                                                    | 1,020        | 204   | 204          |
| BE_A          | Van<br>Meerbeek_Flanders         | Belgium                   | Flanders                                           | Koenraad Van Meerbeek                                                                                | Van Meerbeek et al.<br>(2014)                                                                 | 90           | 90    | 0            |
| BG_B          | BioBio_Bulgaria                  | Bulgaria                  | Rhodope<br>Mountains                               | Idoia Biurrun                                                                                        | Lüscher et al. (2016)                                                                         | 272          | 68    | 68           |
| СН_В          | Bergamini Switzerland            | Switzerland               |                                                    | Ariel Bergamini, Steffen<br>Boch, Klaus Ecker                                                        | Bergamini et al.<br>(2013, 2016); Tillé &<br>Ecker (2014); Boch<br>et al. (2018, 2019a,<br>b) | 4,779        | 4,779 | 0            |
| СН_С          | Dengler Wädenswil                | Switzerland               | Canton of Zürich:<br>Campus Grüental,<br>Wädenswil | Jürgen Dengler, Stefan<br>Widmer                                                                     | Dengler & Widmer<br>(2018)                                                                    | 227          | 18    | 18           |
| CH_D          | Dengler_Ausserberg               | Switzerland               | Valais: Ausserberg                                 | Jürgen Dengler, Manuel<br>Babbi, Regula Billeter,<br>Iwona Dembicz                                   | Dengler et al. (2019)                                                                         | 61           | 25    | 3            |
| CH_E          | Dengler Alp Glivers              | Switzerland               | Grisons: Sumvtig-<br>Cumpadinals, Alp<br>Glivers   | Jürgen Dengler, Daniel<br>Hepenstrick, Stefan<br>Widmer                                              | Hepenstrick et al.<br>(2018)                                                                  | 39           | 3     | 3            |
| CH_F          | BioBio_Switzerland               | Switzerland               | Obwalden:<br>Sarden                                | Philippe Jeanneret                                                                                   | Lüscher et al. (2016)                                                                         | 260          | 65    | 65           |
| CH_G          | Meier Switzerland                | Switzerland               |                                                    | Eliane Meier                                                                                         | Meier & Hofer<br>(2016)                                                                       | 540          | 270   | 0            |
| CN_D          | Deng_Mu Us desert                | China                     | Shaanxi: Dingbian,<br>Mu Us Desert                 | Lei Deng                                                                                             | Deng et al. (2014)                                                                            | 36           | 36    | 0            |
| CN_E          | Deng_Loess Plataeu               | China                     |                                                    | Lei Deng                                                                                             | Deng et al. (2016)                                                                            | 330          | 330   | 0            |
| CZ_J          | Doležal Sumava                   | Czech<br>Republic         | Bohemian Forest<br>Mts., Sumava                    | Jiří Doležal                                                                                         | Mašková et al.<br>(2009); Doležal et al.<br>(2011)                                            | 225          | 15    | 15           |
| CZ_K          | Doležal_Benesov                  | Czech<br>Republic         | Benesov                                            | Jiří Doležal, Jan Lepš                                                                               | Lepš et al. (2007)                                                                            | 60           | 60    | 0            |
| DE_S          | BioBio CSR Germany               | Germany                   | Southern Bavaria:<br>near Ausburgo                 | Sebastian Wolfrum                                                                                    | Lüscher et al. (2016)                                                                         | 164          | 41    | 41           |
| DE_T          | Manthey Greifswald               | Germany                   | Western<br>Pomerania:<br>Greifswald                | Michael Manthey                                                                                      |                                                                                               | 913          | 83    | 83           |
| ES_P          | Alfaro Picos de Europa           | Spain                     | Asturias and<br>Cantabria: Picos<br>de Europa      | Borja Jiménez-Alfaro,<br>Alvaro Bueno, Corrado<br>Marcenò                                            | Jímenez-Alfaro et al.<br>(2010)                                                               | 3,120        | 16    | 16           |

# Appendix 2. Continuation.

| Dataset<br>ID | Short dataset name               | Country/ies                                                                 | Province: location                                                                             | Data owner(s)                                                                                                | Reference(s)                  | <b>N</b> <sub>all</sub> | <b>N</b> ind | <b>N</b> <sub>nes</sub> |
|---------------|----------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|--------------|-------------------------|
| ES_Q          | Löbel Tenerife                   | Spain                                                                       | Canary islands,<br>Tenerife: Anaga Mts.                                                        | Swantje Löbel, Jürgen<br>Dengler                                                                             | Löbel & Dengler<br>(2002)     | 18                      | 13           | 1                       |
| ES_R          | de Bello NE Spain                | Spain                                                                       | Catalonia and Aragón:<br>Ebro valley to<br>Pyrenees                                            | Idoia Biurrun                                                                                                | de Bello et al.<br>(2007)     | 75                      | 15           | 15                      |
| ES_S          | Biurrun Urumea                   | Spain                                                                       | Basque Country:<br>Urumea stream                                                               | Idoia Biurrun                                                                                                | Aramburu (2017)               | 34                      | 34           | 0                       |
| ES_T          | Campos Zalama                    | Spain                                                                       | Basque Country:<br>Zalama Mt.                                                                  | Juan Antonio Campos,<br>Idoia Biurrun                                                                        |                               | 24                      | 24           | 0                       |
| ES_U          | Pladevall Pyrenean<br>fens       | Spain                                                                       | Catalonia: Pyrenees                                                                            | Eulàlia Pladevall-Izard,<br>Aaron Pérez-Haase                                                                |                               | 859                     | 859          | 0                       |
| EU_E          | Roleček Hungary-<br>Romania      | Hungary, Romania                                                            | Mátra Mts., Bükk<br>Mts., Transylvania,<br>Cluj                                                | Jan Roleček, Pavel<br>Dřevojan, Michal Hájek                                                                 | Roleček et al.<br>(2019)      | 5                       | 5            | 0                       |
| EU_J          | Janišová Carpathians             | Romania, Slovakia                                                           | Carpathians: Borišov,<br>Veľká Fatra Mts;<br>Ciosa, Caliman Mts;<br>Poiana Fagului,<br>Hargita | Monika Janišová, Martin<br>Magnes                                                                            |                               | 204                     | 17           | 17                      |
| EU_K          | Essl Europe                      | Austria, Belarus,<br>Bosnia, Croatia,<br>Germany, Ireland,<br>Italy, Serbia |                                                                                                | Franz Essl                                                                                                   |                               | 766                     | 239          | 159                     |
| EU_L          | Perez<br>Haase_Pyrenean<br>mires | Spain, Andorra                                                              | Pyrenees                                                                                       | Aaron Pérez-Haase,<br>Josep Maria Ninot                                                                      |                               | 376                     | 376          | 0                       |
| FR_B          | Van<br>Mechelen_Langued<br>oc    | France                                                                      | Languedoc-Roussillon,<br>Provence-Alpes-Côte<br>d'Azur                                         | Carmen Van Mechelen                                                                                          | Van Mechelen et<br>al. (2014) | 253                     | 253          | 0                       |
| HU_F          | BioBio_Hungary                   | Hungary                                                                     | Homokhátság                                                                                    | Idoia Biurrun                                                                                                | Lüscher et al.<br>(2016)      | 316                     | 79           | 79                      |
| HU_G          | Bátori Hungarian<br>dolines      | Hungary                                                                     | N Hungarian<br>mountains: Aggtelek<br>Karst and Bükk Mts.                                      | Zoltán Bátori, Tünde<br>Farkas, András Vojtkó                                                                | Bátori et al.<br>(2017)       | 356                     | 356          | 0                       |
| IN_A          | Doležal Ladakh<br>unpublished    | India                                                                       | Jammu & Kashmir:<br>East Ladakh, SW<br>Tibetan Plateau                                         | Jiří Doležal                                                                                                 |                               | 369                     | 369          | 0                       |
| IN_B          | Doležal Ladakh<br>nested         | India                                                                       | Jammu & Kashmir:<br>East Ladakh, SW<br>Tibetan Plateau                                         | Jiří Doležal                                                                                                 | Dvorský et al.<br>(2011)      | 384                     | 192          | 0                       |
| IR_A          | Naqinezhad Central<br>Alborz     | Iran                                                                        | Alborz Mts.: Central<br>Alborz, Damavand                                                       | Alireza Naqinezhad,<br>Amir Talebi                                                                           | Talebi (2019)                 | 459                     | 27           | 27                      |
| IT_Q          | EGC Sulmona                      | Italy                                                                       | Chieti province:<br>Palena: San Nicola                                                         | Giampiero Ciaschetti,<br>Sabina Barruscano                                                                   | Burrascano et al.<br>(2018)   | 13                      | 1            | 1                       |
| IT_R          | Filibeck_Picinisco               | Italy                                                                       | Central Apennines,<br>Picinisco                                                                | Goffredo Filibeck, Laura<br>Cancellieri                                                                      |                               | 83                      | 83           | 0                       |
| KZ_A          | Deak Kazhkstan                   | Kazakhstan                                                                  | Kostanay oblast:<br>Rudny, Karamendi,<br>Alexandrovskaya                                       | Orsolya Valkó, Zoltán<br>Bátori, Balázs Deák,<br>András Kelemen, Csaba<br>Tölgyesi                           | Deák et al. (2017)            | 200                     | 200          | 0                       |
| NO_C          | Grytnes North<br>Norway          | Norway                                                                      | Troms: Dividalen                                                                               | John-Arvid Grytnes                                                                                           |                               | 231                     | 33           | 33                      |
| NO_D          | Grytnes South                    | Norway                                                                      | Sogn og Fjordane:<br>Lærdal                                                                    | John-Arvid Grytnes                                                                                           |                               | 70                      | 10           | 10                      |
| NO_E          | Landscape<br>Monitoring Norway   | Norway                                                                      |                                                                                                | Wenche Dramstad,<br>Wendy Fjellstad, Jutta<br>Kapfer, Christian<br>Pedersen, Hanne Sickel,<br>Grete Stokstad |                               | 2,276                   | 569          | 569                     |
| NP_A          | Bhatta Nepal                     | Nepal                                                                       | Langtang National<br>Park                                                                      | Kuber Prasad Bhatta,<br>John-Arvid Grytnes, Ole<br>Reidar Vetaas                                             | Bhatta et al.<br>(2018a, b)   | 252                     | 126          | 0                       |

# Appendix 2. Continuation.

| Dataset<br>ID | Short dataset<br>name          | Country/ies       | Province: location                                                          | Data owner(s)                                                                                | Reference(s)                                                                 | N <sub>all</sub> | <b>N</b> <sub>ind</sub> | <b>N</b> <sub>nes</sub> |
|---------------|--------------------------------|-------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------|-------------------------|-------------------------|
| PL_D          | Pielech nested                 | Poland            | SW Poland: Karkonosze<br>Mts.                                               | Remigiusz Pielech, Marek<br>Malicki                                                          |                                                                              | 130              | 10                      | 10                      |
| PL_E          | Kozub Biebrza                  | Poland            | Podlaskie                                                                   | Łukasz Kozub, Iwona<br>Dembicz, Katarzyna<br>Skłodowska                                      |                                                                              | 195              | 15                      | 15                      |
| PT_A          | Lomba_Ecochange                | Portugal          | Viana do Castelo:<br>Castro Laboreiro                                       | Ângela Lomba, João Honrado                                                                   |                                                                              | 24               | 24                      | 0                       |
| RO_D          | Csergó_Transylvani<br>a        | Romania           | SE Carpathians: Somlyó<br>Valley (Csík Basin) and<br>Kolos (Csík Mountains) | Anna Mária Csergő, László<br>Demeter                                                         | Csergő & Demeter<br>(2012); Csergő et<br>al. (2013); Maseyk<br>et al. (2017) | 196              | 196                     | 0                       |
| RU_I          | Belonovskaya<br>Novgorodskaya  | Russia            | Novgorodskaya oblast:<br>Valday hills                                       | Elena Belonovskaya,<br>Nadezda Tsarevskaya                                                   | Belonovksaya &<br>Tsarevskaya<br>(2018)                                      | 49               | 7                       | 4                       |
| RU_K          | Mirin Belogorie                | Russia            | Belgorod region:<br>reserve Belogorie                                       | Denis Mirin, Ekaterina<br>Zlotnikova                                                         |                                                                              | 26               | 2                       | 2                       |
| RU_L          | Dolnik South Ural              | Russia            | Orenburg and<br>Chelyabinsk regions                                         | Christian Dolnik                                                                             |                                                                              | 91               | 7                       | 7                       |
| RU_M          | Doležal Kamchatka              | Russia            | Kamchatka: Koryto<br>Glacier Valley                                         | Jiří Doležal                                                                                 |                                                                              | 80               | 10                      | 10                      |
| SE_E          | Alatalo Subarctic<br>Sweden    | Sweden            | Norbotten: Latnjajaure                                                      | Juha M. Alatalo, Annika<br>Jägerbrand, Ulf Molau                                             | Alatalo et al.<br>(2014 a, b; 2015a,<br>b; 2016; 2017)                       | 20               | 20                      | 0                       |
| SE_F          | Waldén Sweden<br>restoration   | Sweden            | SE Sweden                                                                   | Emelie Waldén, Regina<br>Lindborg                                                            | Waldén &<br>Lindborg (2016)                                                  | 50               | 50                      | 0                       |
| TJ_A          | Nowak_Tajikistan               | Tajikistan        | Western Tajikistan                                                          | Arkadiusz Nowak, Iwona<br>Dembicz, Zygmunt Kącki,<br>Grzegorz Swacha, Sebastian<br>Świerszcz |                                                                              | 195              | 15                      | 15                      |
| TR_B          | Güler Buca İzmir               | Turkey            | İzmir                                                                       | Behlül Güler                                                                                 |                                                                              | 50               | 14                      | 3                       |
| UA_F          | Vasheniak Dniester<br>Canyon   | Ukraine           | Dniester Canyon and tributaries                                             | Iuliia Vashenyak                                                                             | Vasheniak (2018)                                                             | 329              | 329                     | 0                       |
| UA_H          | Kuzemko Byzky<br>Gard          | Ukraine           | Mykolaiv: Buzky Gard<br>NNP                                                 | Anna Kuzemko, Ganna<br>Kolomients, Dariia Shyriaieva                                         |                                                                              | 26               | 2                       | 2                       |
| UA_I          | Kuzemko Kreida                 | Ukraine           | Kharkiv: Oskol River<br>and Vovcha River<br>valleys                         | Anna Kuzemko, Olga<br>Bezrodnova, Vladimir<br>Ronkin, Galina Savchenko                       |                                                                              | 104              | 8                       | 8                       |
| UA_J          | Vynokurov<br>Southern Ukraine  | Ukraine           | Southern Ukraine                                                            | Denys Vynokurov, Ivan Y.<br>Moysiyenko, Dariia<br>Shyriaieva                                 |                                                                              | 242              | 110                     | 11                      |
| UA_K          | Savchenko Kharkiv<br>& Donetsk | Ukraine           | Kharkiv and Donetsk<br>regions                                              | Galina Savchenko, Vladimir<br>Ronkin                                                         |                                                                              | 143              | 11                      | 11                      |
| UA_L          | Dembicz nested<br>Ukraine      | Ukraine           | Kherson region                                                              | lwona Dembicz, Łukasz<br>Kozub, Ivan Y. Moysiyenko,<br>Viktor Shapoval                       |                                                                              | 156              | 12                      | 12                      |
| UK_C          | BioBio_United<br>Kingdom       | United<br>Kingdom | Wales                                                                       | Idoia Biurrun                                                                                | Lüscher et al.<br>(2016)                                                     | 432              | 108                     | 108                     |
| UK_D          | Stevens Sheffield<br>acidic    | United<br>Kingdom | England: Sheffield                                                          | Carly Stevens                                                                                | Stevens et al.<br>(2016)                                                     | 196              | 196                     | 0                       |
| UK_E          | Stevens Sheffield calcareous   | United<br>Kingdom | England: Sheffield                                                          | Carly Stevens                                                                                | Stevens et al.<br>(2016)                                                     | 242              | 242                     | 0                       |

#### References and other sources to Appendix 2

- Alatalo, J.M., Jägerbrand, A.K. & Molau, U. 2014a. Climate change and climatic events: community-, functional- and species level responses of bryophytes and lichens to constant, stepwise and pulse experimental warming in an alpine tundra. *Alpine Botany* 124: 81–91.
- Alatalo, J.M., Little, C.J, Jägerbrand, A.K. & Molau, U. 2014b. Dominance hierarchies, diversity and species richness of vascular plants in an alpine meadow: contrasting short and medium term responses to simulated global change. *PeerJ* 2:e406.
- Alatalo, J.M., Jägerbrand, A.K. & Molau, U. 2015a. Testing reliability of short-term responses to predict longer-term responses of bryophytes and lichens to environmental change. *Ecological Indicators* 58: 77–85.
- Alatalo, J.M., Little, C.J, Jägerbrand, A.K. & Molau, U. 2015b. Vascular plant abundance and diversity in an alpine heath under observed and simulated global change. *Scientific Reports* 5: 10197.
- Alatalo, J.M., Jägerbrand, A.K. & Molau, U. 2016. Impacts of different climate change regimes and extreme climatic events on an alpine meadow community. *Scientific Reports* 6: 21720.
- Alatalo, J.M., Jägerbrand, A.K., Juhanson, J., Michelsen, A. & L'uptáčik, P. 2017. Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil mites across alpine/subarctic tundra communities. *Scientific Reports* 7: 44489.
- Aramburu, S. 2017. Muhlebergia schreberi belar exotikoaren inbasioaren ikerketa Urumea ibaian [Invasion of the alien grass Muhlebergia schreberi in the Urumea stream]. Bachelor thesis. Unpublished data. University of the Basque Country, Bilbao, ES.
- Bátori, Z., Vojtkó, A., Farkas, T., Szabó, A., Havadtői, K., Vojtkó, A.E., Tölgyesi, C., Cseh, V., Erdős, L., Maák, I.E. & Keppel, G. 2017. Large- and small-scale environmental factors drive distributions of cool-adapted plants in karstic microrefugia. *Annals* of Botany 119: 301–309.
- Belonovskaya, E. & Tsarevskaya, N. 2018. Unpublished data from the Annual report of the Laboratory of Biogeography «Revealing of biotic indicators of sustainability and land-use optimization and creating of the natural conservation biogeographical background». Institute of Geography, RAS, Moscow, RU.
- Bergamini, A., Ginzler, C., Schmidt, B.R., Küchler, M. & Holderegger, R. 2013. Monitoring the effectiveness of habitat conservation: Making changes visible. *Hotspot* 28: 18-19.
- Bergamini, A., Ginzler, C., Schmidt, B.R., Küchler, M. & Holderegger, R. 2016. Die Wirkungskontrolle Biotopschutz Schweiz (WBS) in der Routinephase. N + L Inside 2: 21-24.
- Bhatta, K.P., Grytnes, J.-A. & Vetaas, O.R. 2018a. Downhill shift of alpine plant assemblages under contemporary climate and land -use changes. *Ecosphere* 9: e02084.
- Bhatta, K.P., Grytnes, J.-A. & Vetaas, O.R. 2018b. Scale sensitivity of the relationship between alpha and gamma diversity along an alpine elevation gradient in central Nepal. *Journal of Biogeography* 45: 804–814.
- Boch, S., Ginzler, C., Schmidt, B.R., Bedolla, A., Ecker, K., Graf, U., Küchler, H., Küchler, M., Holderegger, R. & Bergamini, A. 2018.
  Wirkt der Schutz von Biotopen? Ein Programm zum Monitoring der Biotope von nationaler Bedeutung in der Schweiz. *AN-Liegen Natur* 40: 39–48.
- Boch, S., Bedolla, A., Ecker, K.T., Ginzler, C., Graf, U., Küchler, H., Küchler, M., Nobis, M.P., Holderegger, R. & Bergamini, A. 2019a. Threatened and specialist species suffer from increased

wood cover and productivity in Swiss steppes. *Flora* 258: 151444.

- Boch, S,, Bedolla, A., Ecker, K.T., Graf, U., Küchler, H., Küchler, M., Holderegger, R. & Bergamini, A. 2019b. Mean indicator values suggest decreasing habitat quality in Swiss dry grasslands and are robust to relocation error. *Tuexenia* 39: 315–334.
- Burrascano, S., Ciaschetti, G., Vrahnakis, M. & Dengler, J. 2018. Report on the 15th Eurasian Grassland Conference in Sulmona, Italy. *Palaearctic Grasslands* 38: 12–24.
- Csergő, A.M. & Demeter, L. 2012. Plant species diversity and traditional management in Eastern Carpathian grasslands. European Forum on Nature Conservation and Pastoralism, Derventside, UK.
- Csergő, A.M., Demeter, L. & Turkington, R. 2013. Declining diversity in abandoned grasslands of the Carpathian Mountains: do dominant species matter? *PLOS One* 8(8): e73533.
- de Bello, F., Leps, J. & Sebastià, M.-T. 2007. Grazing effects on the species-area relationship: Vegetation along a climatic gradient in NE Spain. *Journal of Vegetation Science* 18: 25–34.
- Deák, B., Tölgyesi, Cs., Kelemen, A., Bátori, Z., Gallé, R., Bragina, T.M., Abil, Y.A. & Valkó, O. 2017. Vegetation of steppic cultural heritage sites in Kazakhstan – Effects of micro-habitats and grazing intensity. *Plant Ecology and Diversity* 10: 509–520.
- Deng, L., Sweeney, S. & Shangguan, Z.-P. 2014. Grassland responses to grazing disturbance: plant diversity changes with grazing intensity in a desert steppe. *Grass and Forage Science* 69: 524– 533.
- Deng, L., Wang, K., Li, J., Zhao, G. & Shangguan, Z. 2016. Effect of soil moisture and atmospheric humidity on both plant productiviy and diversity of native grasslands across the Loess Plateau, China. *Ecological Engineering* 94: 525–531.
- Dengler, J. & Widmer, S. 2018. EDGG biodiversity plots sampled in lawns and meadows of the Campus Grüental in Wädenswil of the Zurich University of Applied Sciences (ZHAW), Switzerland. Unpublished data from the BSc. module "Vegetation analysis".
- Dengler, J., Widmer, S., Staubli, E., Babbi, M., Gehler, J., Hepenstrick, D., Bergamini, A., Billeter, R., Boch, R., Rohrer, S. & Dembicz, I. 2019. Dry grasslands of the central valleys of the Alps from a European perspective: the example Ausserberg (Valais, Switzerland). *Hacquetia* 18: 155–177.
- Doležal, J., Maskova, Z., Leps, J., Steinbachová, D., de Bello, F., Klimešová, K., Tackenberg, O., Zemek, F. & Kvet, J. 2011. Positive long-term effect of mulching on species and functional trait diversity in a nutrient-poor mountain meadow in Central Europe. Agriculture, Ecosystems & Environment 145: 10–28.
- Dvorský, M., Doležal, J., de Bello, F., Klimešova, J. & Klimeš, L. 2011. Vegetation types of East Ladakh: species and growth form composition along main environmental gradients. *Applied Vegetation Science* 14: 132–147.
- Etzold, J., Münzner, F. & Manthley, M. 2016. Subalpine and alpine grassland communities in the northeastern Greater Caucasus of Azerbaijan. *Applied Vegetation Science* 19: 316–335.
- Hepenstrick, D., Widmer, S. & Dengler, J. 2018. Three EDGG Biodiversity Plots sampled in subalpine communities during a Bachelor field course at Alp Glivers (Grisons, Switzerland). Unpublished data.
- Jiménez-Alfaro, B., Obeso, J.R., Abajo Chic, A., Alonso Felpete, J.I., Bueno, A., Fernández-Rodríguez, A., Marcenó, C. & Recondo, C. 2010. Unpublished data from the project "Bases para el seguimiento de los cambios en la flora y vegetación como consecuencia del cambio climático en el Parque Nacional de los Picos de Europa". Jardín Botánico Atlántico and Oviedo University, Gijón. ES.

- Lepš, J., Doležal, J., Bezemer, T.M., Brown, V.K., Hedlund, K., Igual Arroyo, M., Jörgensen, H.B., Lawson, C.S., Mortimer, S.R., (...) & van der Putten, W.H. 2007. Long-term effectiveness of sowing high and low diversity seed mixtures to enhance plant community development on ex-arable fields. *Applied Vegetation Science* 10: 97–100.
- Löbel, S. & Dengler, J. 2002. Phytodiversität und Soziologie von Federbuschgesellschaften im Anaga-Gebirge. In: Löbel, S., Conradt, F., Meier, B. & Boch, S. (eds.) Bericht zur Teneriffa-Exkursion vom 9. bis 23. Februar 2002 – Tagesprotokolle und Projektberichte, pp. 74–82. Institut für Ökologie und Umweltchemie, Lüneburg, DE.
- Lüscher, G., Ammari, Y., Andriets, A., Angelova, S., Arndorfer, M., Bailey, D., Balázs, K., Bogers, M., Bunce, R.G.H., (...) & Zanetti, T. 2016. Farmland biodiversity and agricultural management on 237 farms in 13 European and two African regions. *Ecology* 97: 1625.
- Magnes, M., Mayrhofer, H., Kirschner, P., Stöhr, O., Schwager, J., Dengler, J. & Biurrun, I. 2018. Invitation and guide to the 11th EDGG Field Workshop: Grasslands of inneralpine dry valleys: part 1, Eastern Alps. Austria, 6-13 July 2018. Bulletin of the Eurasian Dry Grassland Group 36: 12-24.
- Maseyk, F.J.F., Demeter, L., Csergő, A.M. & Buckley, Y.M. 2017. Effect of management on natural capital stocks underlying ecosystem service provision: a 'provider group' approach. *Biodiversity and Conservation* 26: 3289–3305.
- Mašková, Z., Dolezal, J., Květ, J. & Zemek, F. 2009. Long-term functioning of a species-rich mountain meadow under different management regimes. Agriculture, Ecosystems & Environment 132: 192-202.
- Mayer, R. & Erschbamer, B. 2017. Long-term effects of grazing on subalpine and alpine grasslands in the central Alps, Austria. *Basic and Applied Ecology* 24: 9–18.
- Mayer, R., Kaufmann, R., Vorhauser, K. & Erschbamer, B. 2009. Effects of grazing exclusion on species composition in high altitude grasslands. *Basic and Applied Ecology* 10: 447–455.
- Meier, E.S. & Hofer, G. 2016. Effects of plot size and their spatial arrangement on estimates of alpha, beta and gamma diversity of plants in alpine grassland. *Alpine Botany* 126: 167–176.

- Peper, J., Jabbarov, A.Sh. & Manthey, M. 2010a. Short-time effects of grazing abandonment on semi arid rangelands in Azerbaijan. *Annals of Agrarian Science* 8: 14–19.
- Peper, J., Pietzsch, D. & Manthey, M. 2010b. Semi-arid rangeland vegetation of the Greater Caucasus foothills in Azerbaijan and its driving environmental conditions. *Phytocoenologia* 40: 73– 90.
- Roleček, J., Dřevojan, P., Hájková, P. & Hájek, M. 2019. Report of new maxima of fine-scale vascular plant species richness recorded in East-Central European semi-dry grasslands. *Tuexenia* 39: 423-431.
- Stevens, C.J., Ceulemans, T., Hodgson, J.G., Jarvis, S., Grime, J.P. & Smart, S.M. 2016. Drivers of vegetation change in grasslands of the Sheffield region, northern England, between 1965 and 2012/13. Applied Vegetation Science 19: 187–195.
- Talebi, A. 2019. Unpublished data from the PhD thesis "Ecology and biodiversity of southern slope of Damavand mountain (Scale-Dependency of ecological drivers and biodiversity patterns)". University of Tehran, Tehran, IR.
- Tillé, Y. & Ecker, K. 2014. Complex national sampling design for long-term monitoring of protected dry grasslands in Switzerland. *Environmental and Ecological Statistics* 21: 453–476.
- Van Mechelen, C., Dutoit, T. & Hermy, M. 2014. Mediterranean open habitat vegetation offers great potential for extensive green roof design. *Landscape and Urban Planning* 121: 81–91.
- Van Meerbeek, K., Helsen, K. & Hermy, M. 2014. Impact of landuse intensity on the conservation of functional and phylogenetic diversity in temperate semi-natural plant communities. *Biodiversity and Conservation* 23: 2259–2272.
- Vasheniak, lu. 2018. Unpublished data from the project financed by Rufford Small Grant Foundation "Rare Species and Habitats Conseravtion Occured in the Limestone Outcrops of Dniester Canyon". Khmelnytskyi Institute of Interregional Academy of Personnel Management, Khmelnytskyi, UNCG, Kyiv, UA.
- Waldén, E. & Lindborg, R. 2016. Long term positive effect of grassland restoration on plant diversity - success or not? *PLOS One* 11(5): e0155836.