Workshop
Phytodiversity of Palaearctic grasslands

Introduction to the working group and to the database

Jürgen Dengler
History of the project...

2001: Swantje Löbel’s Diplom thesis on Öland (Sweden):

2004: Steffen Boch’s Diplom thesis on Saaremaa (Estonia):

2nd root: EDGG Research Expeditions

- EDGG = Eurasian Dry Grassland Group (www.edgg.org)
- Research Expeditions (now: Field Workshops) since 2009

Impressions from the EDGG Field Workshops

Overview of EDGG Research Expeditions / Field Workshops

<table>
<thead>
<tr>
<th>No.</th>
<th>Period</th>
<th>Research area</th>
<th>Altitudes [m a.s.l.]</th>
<th>Participants</th>
<th>Countries</th>
<th>Nested-plot series</th>
<th>10-m²-plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14–26 July 2009</td>
<td>Transylvania (Romania)</td>
<td>321–670</td>
<td>6</td>
<td>3</td>
<td>20</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>10–25 July 2010</td>
<td>Central Podolia (Ukraine)</td>
<td>73–251</td>
<td>18</td>
<td>8</td>
<td>21</td>
<td>226</td>
</tr>
<tr>
<td>3</td>
<td>14–24 August 2011</td>
<td>NW Bulgarian mountains</td>
<td>633–1460</td>
<td>9</td>
<td>5</td>
<td>15</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>29 March – 5 April 2012</td>
<td>Sicily (Italy)</td>
<td>4–1200</td>
<td>14</td>
<td>5</td>
<td>21</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>15–23 May 2012</td>
<td>N Greece</td>
<td>1–1465</td>
<td>16</td>
<td>6</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>22 July – 1 August 2013</td>
<td>Khakassia (Russia)</td>
<td>300–700</td>
<td>14</td>
<td>7</td>
<td>39</td>
<td>133</td>
</tr>
</tbody>
</table>

7 – 2014 – Navarre (Spain)
8 – 2015 – S Poland
9 – 2016 – Serbia
10 – 2017 – Central Italy
11 – 2018 – Inneralpine valleys of the Eastern Alps
Sampling design of the EDGG Field Workshops

Standardised multi-scale and multi-taxon sampling of plant diversity and composition data of (dry) grasslands across the Palaearctic biogeographic realm

- „Biodiversity plots“ with seven grain sizes: 0.0001, 0.001, 0.01, 0.1, 1, 10 and 100 m²
- Additional „normal plots“ of 10 m²
- Placed subjectively within different grassland areas, and within each area, with the aim to capture the full ecological and floristical gradient
- All terricolous taxa of the vegetation (vascular plants, bryophytes, lichens, macro-“algae“)
- Shoot presence
- Environmental data for all 10-m² (sub-) plots
Outcomes of the EDGG Field Workshops

- So far **9 EDGG Research Expeditions/Field Workshops**

- **Phytosociological publications:**
 - 1st expedition - Transylvania
 - 2nd expedition - Ukraine
 - 3rd expedition - Bulgaria

- **Biodiversity publications:**
 - 1st expedition - Transylvania: Turtureanu et al. 2014
 - 3rd expedition – Bulgaria: Velev, Dembicz et al. in prep.

- **Biodiversity publications from similar studies:**
 - Saaremaa: Dengler & Boch 2008
 - Uckermark: Dengler et al. 2004
Scale- and taxon-dependent patterns of plant diversity in steppe ecosystems of Khakassia, South Siberia (Russia)

Mariya A. Polyankova1, Iwona Dembičz2, Thomas Becker3, Ute Becker4, Olga N. Demina5, Nikolai Ermakov4, Goffredo Filibeck6, Riccardo Guarino7, Monika Janisova8, Renaud Jaumantre9,10, Lukasz Kozul9, Manuel J. Steinbauer11, Kohei Suzuki12, Jürgen Denger13,14

Received: 31 October 2015 / Revised: 22 March 2016 / Accepted: 31 March 2016
Published online: 13 April 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The drivers of plant richness at fine spatial scales in steppe ecosystems are still not sufficiently understood. Our main research questions were: (i) How rich in plant species are the natural steppe ecosystems of Southern Siberia compared to natural and semi-natural grasslands in other regions of the Paleartic? (ii) What are the main environmental drivers of the diversity patterns in these steppe ecosystems? (iii) What are the diversity–environment relationships and do they vary between spatial scales and among different taxonomic groups?

Communicated by Dilek Anbarci.

Electronic supplementary material The online version of this article (doi:10.1007/s10531-016-1093-y) contains supplementary material, which is available to authorized users.

1. Introduction

In Europe, some of the most biodiverse and threatened habitats are found in agricultural landscapes (Büttel et al., 2008; Oppermann et al., 2012). In contrast to the more homogeneous natural vegetation cover, these cultural landscapes are characterized by a mosaic of many different natural, semi-natural and artificial habitat types. The so-called semi-natural open habitats have been shaped primarily through traditional low-external agricultural practices, which have supported the enrichment and diversification of the vegetation (Oppermann et al., 2012; van Iersel, 2000). In particular, semi-natural grassland ecosystems may support extraordinarily high numbers of plant species compared to other community types, both at small scale (Djaková et al., 2011;
3rd root: Studies on Species-Area Relationships

- Presentation already on IAVS Conference 2007 in Swansea
- Data compilation later on together with Salza Todorova/Palpurina
ORIGINAL ARTICLE

Which function describes the species-area relationship best? A review and empirical evaluation

Jürgen Dengler

ABSTRACT

Aim The aims of this study are to resolve terminological confusion around different types of species–area relationships (SARs) and their discrimination from species sampling relationships (SSRs), to provide a comprehensive overview of models and analytical methods for SARs, to evaluate these theoretically and empirically, and to suggest a more consistent approach for the treatment of species–area data.

Location Carpathian Spit in north-west Russia and archipelagos worldwide.

Methods First, I review various typologies for SARs and SSRs as well as the methods and models applied to SARs. This results in a list of 23 function types, which are applicable both for untransformed (S) and for log-transformed (log S) species richness. Then, example data sets for nested plots in continuous vegetation (n = 14) and islands (n = 6) are fitted to a selection of 12 function types (linear, power, logarithmic, saturation, sigmoid) both for S and for log S. The suitability of these models is assessed with Akaike’s information criterion for S and log S, and with a newly proposed merit that addresses extrapolation capability.

Results SARs, which provide species numbers for different areas and have no upper asymptote, must be distinguished from SSRs, which approach the species richness of one single area asymptotically. Among SARs, nested plots in continuous ecosystems, non-nested plots in continuous ecosystems, and islands can be distinguished. For the SARs of the empirical data sets, the normal and quadratic power functions as well as two of the sigmoid functions (Lomolino, cumulative beta P) generally performed well. The normal power function (fitted for S) was particularly suitable for predicting richness values over ten-fold increases in area. Linear, logarithmic, convex saturation and logistic functions generally were inappropriate. However, the two sigmoid models produced unstable results with arbitrary parameter estimates, and the quadratic power function resulted in decreasing richness values for large areas.

Main conclusions Based on theoretical considerations and empirical results, I suggest that the power law should be used to describe and compare any type of SAR while at the same time testing whether the exponent a changes with spatial scale. In addition, one should be aware that power-law parameters are significantly influenced by methodology.

Keywords Curve fitting, goodness-of-fit, logarithmic function, macroecology, model selection, power function, saturation function, sigmoid function, species sampling relationship, species–area relationship.

© Institute of Botany, Academy of Sciences of the Czech Republic 2008

Sampling-Design Effects on Properties of Species-Area Relationships – A Case Study from Estonian Dry Grassland Communities

Jürgen Dengler - Steffen Boch

Abstract Despite widespread use of species-area relationships (SARs), dispute remains over the most representative SAR model. Using data of small-scale SARs of Estonian dry grassland communities, we address three questions: (1) Which model describes these SARs best when known artefacts are excluded? (2) How do different sampling procedures (marginally instead of central position of the smaller plots in relation to the largest plot; single values instead of average values; randomly located subplots instead of nested subplots) influence the properties of the SARs? (3) Are these effects likely to bias the selection of the best model? Our general dataset consisted of 16 series of nested-plot (1 cm²–100 m², any-part system), each of which comprised five series of subplots located in the four corners and the centre of the 100 m² plot. Data for the three pairs of different sampling designs were generated by this dataset by subsampling. Five function types (power, quadratic power, logarithmic, Michaelis-Menten, Lomolino) were fitted with non-linear regression. In some of the communities, we found extremely high species densities (including bryophytes and lichens), namely up to eight species in 1 cm² and up to 140 species in 100 m², which appear to be the highest documented values on these scales. For SARs constructed from nested-plot average-value data, the regular power function generally was the best model, closely followed by the quadratic power function, while the logarithmic and Michaelis-Menten functions performed poorly throughout. However, the relative fit of the latter two models increased significantly relative to the respective best model when the single-value or random-sampling method was applied, however, the power function normally remained the superior.

© 2008 The Author. Journal compilation © 2009 Blackwell Publishing Ltd

J. Tauger (C) Plant Systematics, Biocenter Kiel-Flensburg, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany e-mail: dengler@botanik.uni-hamburg.de

S. Boch Institute of Plant Sciences, University of Bern, Albenbergstr. 21, CH-3013 Bern, Switzerland e-mail: steffen.boch@ge.ppb.unibe.ch
2016: Restart of the activities for a common database in the framework of EDGG

- Data overview paper in the EDGG Bulletin
- Methodological paper in the EDGG Bulletin
- Call for data
- Start of richness data and metadata compilation together with Idoia Biurrun
- Idea of the workshop and application to BayFor
- January 2017: Grant approved
- March 2017: Workshop in Bareuth
Registered in GIVD

- **GIVD ID**: EU-00-003
- **Custodian**: Jürgen Dengler
 Deputy Custodian: Idoia Biurrun

Global Index of Vegetation-Plot Databases

EU-00-003 - Database Scale-Dependent Phytodiversity Patterns in Palaeartic Grasslands

http://www.givd.info/ID/EU-00-003

Dengler, Jürgen et al.

Database Details

Please refer to the ID **EU-00-003** whenever using data from this particular database.

- **ID**: EU-00-003
- **Registered since**: 2010-08-09
- **Last update**: 2016-11-20
- **Web address**
- **Fact Sheet**: Download
- **Availability**: (fact sheet) according to a specific agreement

Name of the Database: Database Scale-Dependent Phytodiversity Patterns in Palaeartic Grasslands (required field)
Database Scale-Dependent Phytodiversity Patterns in Palaeartic Grasslands (EU-00-003)

Aims: The database formerly was named "Database Species-Area Relationships in Palaeartic Grasslands" and started as a repository for the data collected at the Research Expeditions/Field Workshops of the Eurasian Dry Grassland Group (EDGG) and similar multi-scale sampling schemes.

Meanwhile we are looking for are phytodiversity data sampled on plots of the following standard areas: 0.0001 m², 0.001 or 0.0009 m², 0.01 m², 0.1 or 0.09 m², 1 m², 10 or 9 m², 100 m², and 1000 or 900 m². We preferentially look for nested-plot multi-scale data, but we also take data for single grain sizes, provided they were carefully sampled with the aim of complete species lists, i.e. we request that plots have been precisely delimited in the field, usually with metal pins and a measuring tape, which typically is not the case for conventional phytosociological relevés. Nested-plot data with at least four different plot sizes are also accepted when plot sizes deviate from our standards. Any type of grassland s.l. from the whole Palaeartic biogeographic realm (Europe, North Africa, West, Central and North Asia). Data of vascular plants and/or terricolous non-vascular plants (bryophytes, lichens and macroalgae) can be provided. While you can provide in the easy-most case just richness counts per plot (together with metadata, such as plot size, coordinates, grassland type), even more valuable are data with species composition and potentially cover + selected environmental data.

Thanks to funding from BayIntAn program of the Bavarian Research Alliance (BayFor), an international workshop will be conducted 6-10 March 2017 in Bayreuth aimed at planning overarching analyses and papers of the data as well as third-party grant proposals based on them. The workshop is mainly for invited participants (colleagues who contributed large datasets or with strong statistical skills in big macroecological...
Requirements of the database

• Grasslands s.l. from the Palaearctic realm
• Nested-plot series with at least 4 grain sizes and/or data from standard grain sizes (0.0001; 0.001 or 0.0009; 0.01; 0.1 or 0.09; 1; 10 or 9; 100; 1000 or 900 or 1024 m²)
• Precisely delimited plots, carefully sampled for completeness
• Precise coordinates (nearly always)
• Often: also bryophytes and lichens sampled
• Often: environmental data from the plot
The database (v. 34)

- Management by Idoia Biurrun
- 77 datasets
- 98 data owners
- 24 countries
- 24,855 plots
 - roughly 40% also with bryophytes & lichens
 - for large majority compositional data
- 1,420 nested-plot series
<table>
<thead>
<tr>
<th>Area [m²]</th>
<th>All terricolous species</th>
<th>Vascular plants</th>
<th>Non-vascular plants</th>
<th>Bryophytes</th>
<th>Lichens</th>
<th>Fraction non-vascular plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td></td>
<td>1,315</td>
<td>1,571</td>
<td>1,315</td>
<td>1,315</td>
<td>1,315</td>
</tr>
<tr>
<td>0.0004</td>
<td></td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>0.0009</td>
<td></td>
<td>388</td>
<td>388</td>
<td>388</td>
<td>388</td>
<td>377</td>
</tr>
<tr>
<td>0.001</td>
<td></td>
<td>940</td>
<td>1,943</td>
<td>940</td>
<td>940</td>
<td>940</td>
</tr>
<tr>
<td>0.002</td>
<td></td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>0.0025</td>
<td></td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>0.004</td>
<td></td>
<td>0</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.0042</td>
<td></td>
<td>0</td>
<td>84</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.0079</td>
<td></td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>0.0089</td>
<td></td>
<td>1,547</td>
<td>2,969</td>
<td>1,547</td>
<td>1,568</td>
<td>1,547</td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>0.016</td>
<td></td>
<td>0</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.04</td>
<td></td>
<td>71</td>
<td>93</td>
<td>71</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>0.0625</td>
<td></td>
<td>344</td>
<td>344</td>
<td>344</td>
<td>344</td>
<td>344</td>
</tr>
<tr>
<td>0.063</td>
<td></td>
<td>0</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.07</td>
<td></td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>0.09</td>
<td></td>
<td>195</td>
<td>279</td>
<td>195</td>
<td>195</td>
<td>195</td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td>938</td>
<td>1,584</td>
<td>938</td>
<td>938</td>
<td>938</td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td>106</td>
<td>154</td>
<td>106</td>
<td>106</td>
<td>106</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1,595</td>
<td>6,730</td>
<td>1,595</td>
<td>1,797</td>
<td>1,601</td>
</tr>
<tr>
<td>2.25</td>
<td></td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>407</td>
<td>620</td>
<td>407</td>
<td>428</td>
<td>407</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>301</td>
<td>301</td>
<td>301</td>
<td>301</td>
<td>301</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1,095</td>
<td>3,947</td>
<td>1,095</td>
<td>1,095</td>
<td>1,096</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>157</td>
<td>229</td>
<td>157</td>
<td>157</td>
<td>157</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>0</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>0</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>876</td>
<td>2,609</td>
<td>876</td>
<td>876</td>
<td>976</td>
</tr>
<tr>
<td>256</td>
<td></td>
<td>0</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>0</td>
<td>133</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td></td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
| Total | | 10,702 | 24,855 | 10,702 | 10,967 | 10,809 | 10,176
Main plot sizes

- **6,730** 1-m² plots
- **4,248** 10-m² (or 9-m²) plots
- **3,019** 0.01-m² plots
- **2,609** 100-m² plots
- **2,331** 0.001-m² (or 0.0009-m²) plots
- **1,863** 0.1-m² (0.09-m²) plots
- **1,571** 0.0001-m² plots
- **145** 1000-m² (or 1024-m²) plots
Compare with the European Vegetation Archive (EVA)

- c. 350,000 grassland plots with much better spatial coverage (vs. 25,000 in EDGG database)
- Compositional data all in one Turboveg 3 database (vs. not yet integrated in EDGG “database”)
Advantages of the EDGG database

- Multi-scale sampling (in many cases)
- Multi-taxon sampling: vascular plants, bryophytes, lichens (in 40%)
- Whole Palaearctic (not only Europe)
- Strong focus on precise plot sizes (delimited in the field) and complete species lists
- Precise coordinates
- Good availability of environmental data from the plots